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An analytical solution of the radiation transfer equation is constructed in the 
space of Lagrangian variables spatially related to three–dimensional trajectories of 
optical rays. Using this solution the parabolic equation for the wave eikonal is 
reduced to a system of five ordinary differential equations. This system of equations 
describes the lowest–order aberrational distortions of noncircular beams with axial 
symmetry in media with an arbitrary mechanism of nonlinearity.  

To illustrate the efficiency of the obtained system the nonlinear part of the 
dielectric constant of media with the Kerr and thermal types of nonlinearity has been 
calculated. Evolutions of wave aberrations of axially symmetric beams in both types of 
nonlinear media are compared. 

 
Propagation of light beams through nonlinear media is 

accompanied by their distortions of aberration type. In the 
so–called aberration–free approximation such nonlinear 
distortions are reduced to self–action of beams, during 
which the parabolic shape of their wavefront is conserved.1-3 
Aberrations of the fourth order, in particular, spherical 
aberrations, as well as aberrations of higher orders, can 
significantly alter the character of the beam propagation, 
introducing such specific features into it as generation of 
aberration rings, limitation of the transverse size of 
Gaussian–type beams, redistribution of the field at the near 
focal zone, etc.4-8  

An even wider spectrum of nonlinear aberrations is 
associated with self–action of noncircular beams, in 
particular, of elliptic ones.4-5 No mathematical apparatus 
has been developed so far, which would make it possible to 
study aberrations of such beams that made the investigation 
of aberrations of even the lowest orders very difficult. 
Moreover, it was impossible to study the suppression or 
induced development in nonlinear media of aberrations, 
which were initially introduced into the beam wavefront. 
All that hampered solving a wide range of problems in 
optics of nonlinear media.  

This paper develops the aberrational theory of thermal 
blooming of light beams with degenerated central symmetry of 
their cross section for the case of the axially symmetric 
(elliptic) beams. Such a self–action takes place in media with 
arbitrary mechanisms of nonlinearity. Aberration distortions of 
the fourth order are self–consistently described by a system of 
ordinary differential equations, using three additionally 
introduced aberration functions. The theory agrees with its 
earlier developed simplified modifications,6,7 and naturally 
generalizes them. The methodology used may be applied to 
description of aberrational distortions of other even orders, 
which are characteristic of noncircular beams.  

Prior to description of nonlinear aberrations of beam 
with axial symmetry, whose field remain invariable at either 
simultaneous or independent change of signs of transverse 
coordinates x and y, let us first determine a wavefront 
profile characteristic of such beams. For this purpose we 
consider the characteristic equation of the ray trajectories 
 

dρ/dz = ∇
⊥
s , (1) 

 

which relates the change of the transverse vector ρ = {x, y} of 
a running point of the ray trajectory along the longitudinal 
coordinate z to the addition to the eikonal of the plane wave 

s(r), where r = {x, y, z} and ∇
⊥
 = ( )∂

∂x , 
∂

∂y  is the 

transverse Hamiltonian.  
Within the so–called aberration–free approximation, 

the ray trajectories (1) of an elliptic beam are completely 
defined by the vector function ξ = {ξ

1
, ξ

2
}, 

 
ξ
1
 = x/a

10 
f
1
(z),  ξ

2
 = y/a

20 
f
2
(z) , (2) 

 
which is conserved along each trajectory; a

10
 and a

20
 are the 

characteristic initial and f
1,2

(z) the running dimensionless 

semi–axes of the cross section of an elliptic beam.4,5 In 
accordance with Eqs. (1) and (2) we have 

 
∂s/∂ξi = ai0 fi(ai0 f ′i ξi + ai0 fi dξi/dz)  (i = 1, 2) , (3) 

 
and, therefore, integrating Eq. (3) we obtain 
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0
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2
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where s

0
(z) is the additional phase shift due to the change 

in the velocity of wave propagation. 
If aberrations are present, the vector ξ(r) is no longer 

conserved, and it is characterized (as may be easily calculated) 
by the n = N(N + 5)/2 dimensionless aberration functions in 
accounting for aberrations described in the eikonal by products 
of various even powers of transverse coordinates x and y, right 
up to the terms of the cumulative power 2(N + 1) 
(N = 1, 2, ...). In the particular case of aberrations of the 
fourth order (N = 1), being considered below, the number of 
the needed aberration functions is n = 3.  

Denoting the aberration functions as A
1,2

(z) and A
12

(z) 

we may express the integrands in Eq. (4), which satisfy the 
condition of integration 
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as follows: 
 

dξi

dz  = 
ξ3
i

2  
dAi

dz  + 
a

3–i,0 f3–i

2ai0 fi
 ξiξ3–i

2  
dA

12

dz    (i = 1, 2) , (5) 

 

so that the eikonal of an axially symmetric beam itself is 
represented in the form 

 

s(ξ, z) = s
0
(z) + 

1
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The law of intensity distribution of a beam distorted 
by aberrations can be found from the parabolic equation of 
the radiation transfer 

 

∂I/∂z + ∇
⊥
 (I ∇

⊥
s) + dI = 0 , (7) 

 

where I is the radiation intensity and δ is the absorption 
coefficient of the medium.  

The solution of Eq. (7) satisfying the condition 
 

I(r, 0) = I
0 
(x

0
) , (8) 

 

at the boundary z = 0 of the nonlinear medium, where 
ξ(ρ, 0) = ξ

0
(ρ) can be expected to have the following form: 

 

I(r) = I
0
(N) e–δz⏐J(Ξ)⏐ , (9) 

 

where Ξ = {Ξ
1
, Ξ

2
} is a continuous transverse vector, 

coinciding with ξ
0
 at z=0, its transformation from the 

variables Ξ
1,2

(ξ, z) to the variables ξ
10
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, ξ
20 
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20

 

(f
1,2

(0) = 1) or to the variables ξ
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 is performed with the 

help of the Jacobian 
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It can easily be seen that representations (9) and (10) 
satisfy the law of conservation of the total radiation power 
of the intensity I(r) exp(δz), which follows from Eq. (7), 
while substitution of Eqs. (9) and (10) into equation 
Eq. (7) reduces it to an identity provided that equations 

 

∂Ξi/∂z + ∇
⊥
Ξi∇⊥

s = 0 (i = 1, 2) , (11) 
 

∂J/∂z + ∇
⊥
(J ∇

⊥
s) = 0 . (12) 

 

are satisfied.  
If we take Eq. (1) account into from Eq. (11) it 

follows that the functions Ξ
1,2

(ξ, z) are conserved along the 

ray trajectories, being thus the Lagrangian variables 
determining the running point (the coordinate z plays the 
role of time). Such a point belongs to the ray trajectory of 
the trajectory in the space, of the trajectory originating 
from the point Ξ(ξ

0
, 0) = ξ

0
. As to the integrals of the 

equation of the ray trajectories (Eq. (1)), from which one 
finds the variables Ξ

1,2
, they are generally represented by 

the recurrent relation 
 

Ci = Mi(xi
, F

i
, z) (i = 1, 2) , (13) 

 

where Ôi(C, z) are the integral functions of corresponding 

indices, and the vector C = {C
1
, C

2
} denotes the set of the 

same integrals (13). Since the integral function Ôi always 

enters into Eq. (13) additively, simple redenoting the 
constant Ci can make the initial value of Ôi(C, 0) = 0.  

From integrals (13) one can write the variables 
 

ξi = Mi
–1(Ci, Φi, z) (i = 1, 2) (14) 

 

in terms of the functions M–1
i  which are inverse to the 

functions in the right side of integrals (13) and determine 
the Lagrangian variables at z = 0 

 

Ξi = Mi0
–1 (Ci) ≡ Mi

–1 (Ci, 0, 0) (i = 1, 2) . (15) 
 

After substituting constants (13) into Eq. (15) the 
Lagrangian variables become related to the variables ξ

1,2
, z 

(or to the Euler variables x, y, and z) as follows: 
 

Ξi = Mi0
–1 (Mi(ξi, Φi, z)) (i = 1, 2) . (16) 

 

After the recursive substitutions of Eq. (13) the value C in 
the argument of Фi is also expressed in terms of ξ and z.  

Integration of the function J(Ξ) from Eq. (12) over 
trajectories (1) at the initial condition J(ξ

0
) = 1 yields 
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⎩
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z
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where in accordance with Eqs. (2) and (14) 
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1
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Note that the functions f
1,2

(ζ) and Ф
1,2

(C, ζ) are taken with 

the argument ζ and according to Eq. (13), 
 

Ci = Mi0(Ξi) ≡ Mi (Ξi, 0, 0) (i = 1, 2) 
 

at z = 0, what finally determines the functional dependence 
of the Jacobian.  

Using expressions (9)–(17) and applying them to 
noncircular beams with wavefront (6) one can find integrals 
(13) of Eq. (1) in the form 

 
 

Ci = ξi
–2 + Ai + Φi  (i = 1, 2) , (13′) 

 

where the integral functions are 
 

Φi(C, z) = 
a

3–i,0
ai0

 
⌡
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0

z
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fi(ζ)  
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C
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′ (ζ) dζ 

(i = 1, 2). 
 

In accordance with Eq. (16) the Lagrangian variables 
are determined from Eq. (13′) by the formulas 

 
Ξi = ξi{1 + [αi(z, 0) + ϕi(ξ, z, 0)] ξ

2
i}

–1/2(i = 1, 2) , (16′) 
 

in which αi(z, 0) = Ai(z) – Ai0 and Ai0 = Ai(0). As to the 

Jacobian of transformation (10), it appears to be 
represented, in agreement with Eqs. (17) and (18), as a 
function 
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of the Euler coordinates, where 
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αi(z, ζ)=αi(z) – αi(ζ), ϕi(ξ, z, ζ)=Φi(C, z) – Φi(C, ζ) (i= 1, 2). 
 

Note that the functions ϕ
1,2

(ξ, z, ζ) describing the three–

dimensional shape of the ray trajectories (16′) can be 
represented by the recurrent dependence 
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if one takes Eq. (13′) into account 

Therefore the distribution of intensity over the cross 
section of a noncircular beam with its axial intensity I

0
, 

having a symmetric, with respect to the beam axes, initial 
profile (8)  

 

I
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0
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which may be represented by a hyper–Gaussian function 
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is also described by a hyper–Gaussian distribution 
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if Eq. (10′) is substituted into Eq. (9). Here 
 

l
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(z) = – δso (δz + lnf
1
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2
) – (1 – δs0)[bmn(z) + hmn(z)] (23) 

 

(s = m + n and δst is the Kronecker symbol). The latter 

coefficients may be represented in terms of the coefficients 
from the expansion into a double series over variables ξ2

1,2
 

 

∑
m=0

∞

 
 ∑
n=0

∞

 
 BmnΞ

2m
1

 Ξ2n
2

 = ∑
m=0

∞

 
 ∑
n=0

∞

 
 bmn(z) x

2m
1

 ξ2n
2

 . (24) 

 
This series is formed of expressions (16′) and the expansion 
of function (19) 

∑(ξ2
1
, ξ2

2
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m=0
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It should be noted that representation (21) of the 
initial profile of the beam is universal in the sense that the 
numbers 
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P
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(0≤s = m + n < ∞) can always be recurrently found from the 

coefficients Pmn(P00
 = P(0, 0)) of the expansion of an 

arbitrary continuous function into a double series 
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When calculating the coefficients bmn(z) it appears 

reasonable to confine oneself to terms up to the sixth 
cumulative power in the expansion of the squared 
Lagrangian variables (16′) over the products of powers of 
squared ξ

1,2
, i. e., 

 

Ξi
2 = ξi
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 γi
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where the functions 
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z

A
3–i′ (ζ)F

3–i(ζ) dζ, m ≠ n

 (25) 

 

are defined for 0 ≤ (i, s) ≤ 2, s = m + n, and θ(p) is the 
Heaviside unit function equal to zero for p ≤ 0 

 

Θi
(m, n)

 = δi1θ(m) + δi2θ(n) (i = 1, 2) . 
 

Using the designations we find from Eq. (24) that 
 

bmn(z) = Bmn + ∑
p=0

m

 
 ∑
q=0

n

 
 p! q! (1 – δmpδnq) × 

 

× Bpq [η(m–p, n–q)
θ(p)

(z) + η(m–p, n–q)
2θ(q)

(z)] (26) 

 

within the interval of indices 0 ≤ m + n ≤ 3.  
The coefficients hmn(z) of the expansion of function (19) 

into series (19′) within the same interval of indices 
0 ≤ m + n ≤ 3 appear to be equal to 
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hmn(z) = (–1)s+1(1 – δs0) C s
m H(s)

1(m),2(n)
 (z) , (27) 

 
where s = m + n and Cm

s  are the binomial coefficients. The 

notation k(l) denotes here the index k (k = 1, 2) repeated l 
times (l = m, n) when reproducing the functions 
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It is assumed that H (p)
i(p)

(z, z) = H (p)
i(p)

(z) in Eq. (27), so that 

H(1)
i (z, z) = Hi(z) (i = 1, 2), as can be seen from Eq. (28).  

It is convenient to ascribe the following form to the 
profile of the beam intensity (22) within the employed 
approximation (27) 
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To do that we have to integrate the argument of the 
exponential function (19) of the Jacobian (10′). Variables 
Ξ

1,2
 here are given by Eq. (16′) and the functions h(–)

mn(z) 

are given by formulas (27) and (28) in which 

H
1,2

(z) } H(+)
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(z) is replaced by H(–)
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(z), and 

 

H(±)
i (z) = αi(z, 0) ± 

1
2 [αi(z, 0) + Fi(z)]  (i = 1, 2) . 

 

It is evident that the expression for the beam intensity in 
its last form is a generalization of a similar expression well 
known from theory, which accounts for spherical aberrations 
of the axially symmetric beams. If all terms in the series (22) 
are held at a constant index, while the other index being equal 

to zero (or if integration is carried out in Eq. (19) at a
3–i,0 

←
→ 

 ∞, f
3–i = 1 and A

3–i = A
12 = 0) it is reduced to the intensity 

distribution for a one–dimensional beam 
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0
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fi[1 + αi(z, 0) ξi
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The obtained expressions make it possible to find 

equations describing the behavior of the sought–after 
aberration functions A

1,2
(z) and A

12
(z). To this end, let us 

use the parabolic equation for the wave eikonal 
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ε
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⊥
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in which a real nonlinear addition ε ′nl[I] to the dielectric 

constant of the medium (ε
0
 being its nonperturbed value) is, 

generally speaking, some functional of the beam intensity; 
k = 2π/λ is the wave number.  

Within the approximation of aberrations of the fourth 
order it appears sufficient to expand this nonlinear addition 
in a series over the even powers of ξ

1,2
 (or over the powers 

of x, y), only to the terms which have a cumulative power 
not exceeding 4, i.e., 

 

ε′
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m=0
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2m,2n(z) ξ
2m
1

ξ2n
2

 . (30) 

 

Note that the coefficients of such an expansion ε′
2m,2n(z) are 

determined taking into account the specific mechanism of 
the medium nonlinearity. For example, if the medium is of 
cubic nonlinearity i. e., ε ′nl[I] = ε2[I] 
 

ε′
2m, 2n(z) = ε(2) Imn(z) , 

 

where 
 

Imn(z) = I
0
(f

1
 f

2
)–1exp(–δz) D(m, n)(z) 

 

characterize the expansion of the beam intensity in a doulbe 
series and may be expressed in terms of the coefficients (23) 
using the recurrent formulas 
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+
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 ∑
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Within the interval of indices 0 ≤ s = m + n ≤ 2 we have 
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l
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l
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) , (30′) 

 

where lmn(z) are calculated using formula (23) taking 

Eqs. (26) and (27) into account. 
As to the medium with a thermal nonlinearity, the 

value ε ′nl[I] = (dε/dT)[T(r) – T(0, z)] is determined by the 

temperature profile T(r) within the beam cross section, and 
the coefficients ε′

2m, 2n(z) can be determined by solving 

the equation of heat conductivity. Assuming that the 
Gaussian profile of the beam is conserved, i.e., 
|lmn| < (|l

10
|, |l

01
|) for m + n > 1, at a moderate ellipticity 

of its cross section, when ⏐μ(z)⏐ < 1 and 

μ(z) = (a2
20

 f 2
2
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 – a2
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 f 2

1
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01
)/(a2

20
 f 2

2
 l

10
 + a2

10
 f 2

1
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01
) 

the calculations of the terms up to the terms containing μ(z) 
and μ2(z) yield, within the same interval of indices 
0 ≤ s = m + n ≤ 2 
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where 

γmn(z) = (1 – δs0)
⎩
⎨
⎧[ ]1 + 

θ(m) – θ(n)
θ(m) + θ(n)

 
μ(z)
2

s

 + 

 

+ 
1
3 [θ(m – 1) – θ(n – 1)] μ(z) – }3

4 θ(m) θ(n) μ2(z)  , 

 

κ is the coefficient of the medium heat conductivity, and l
10

(z) 

and l
01

(z) are set in accordance with Eqs. (23), (26), and (27). 

Substitution of Eqs. (6), (22), and (30) into Eq. (29) 

yields (after the coefficients at the equal powers of ξ2m
1,2

(m = 0, 1, 2) and at the product ξ2
1
ξ2
2
 are equalized) the 

equations for the sought–after functions S
0
, f

1,2
, A

1,2
, and A

12
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where lmn
(i) = δi1 lmn + δi2 lnm, ε

2m,2n
(i)  = δi1ε

2m,2n′  + δi2ε
2n,2m′  , 

the values lmn(z) and ε′
2m2n (z) are given by expressions (23) 

and (30′) or (30′′), respectively, and Rdi = ka 2
i0 (i = 1, 2) 

are the diffractional lengths of the beam. It is easy to find 
that for the case of a circular beam (a

10 
= a

20 
= a

0
) 

ε
20
′  = ε

02
′ , ε

40
′  = ε

04
′  = 

1
2 ε22

′ , and, similarly, 
 

Lmn = Lnm, Lm0
 = L

0m = 
1
m Lm–1,1

 } Lm(0 ≤ n < m + n ≤ 3) , 
 

where Lmn=(B, b, h, l)mn. System (31) is then reduced to 

three equations for the functions s
0
, f, and A

1
 (f = f

1 
= f

2
, 

A
1 
= A

2 
= A

12
) which are transformed, after introducing the 

relevant nonlinear lengths and taking Eqs. (30′) or (30′′) into 
account, to equations obtained elsewhere.7 

The analysis of the system of equations (31) shows 
that nonlinear aberrations inevitably develop in the field 
of an arbitrary beam of limited geometric size. However, 
the development is different in media with different 
mechanisms of nonlinearity. For example, if the medium 
is cubically nonlinear, the aberrations are predominantly 
induced along the coordinate, where the size of the beam 
is minimum, and its refraction is the strongest. As to the 
medium with thermal blooming, aberrations are, in 
contrast, the strongest along the major axis of the beam 
cross section, where, depending on the ratio of the two 
beam axes, its refraction may be almost three times as 
low as that in the plane normal to it. Moreover, higher 
beam ellipticity results in stronger perturbations of both 
its wavefront and cross section, which become wavy, so 
that the beam ellipticity is lost.  

A significant difference between the two cases is that 
the direction, in which aberrations develop, depends on 
the geometric and optical parameters of the beam. As to 
the medium with cubic nonlinearity of this or that sign, 
the aberrations always develop along the principal axes of 
the beam cross section, irregardless of their ratio. The 
shape of the initial beam intensity profile only determines 
whether these aberrations are of the same or the opposite 
signs. During the thermal blooming, however, the signs of 
these aberrations in the same mutually normal planes are, 
first of all, determined by the ratio of the principal axes 
of the beam.  

Note also that the wave properties themselves affect 
the aberrational distortions of the beam, either hampering 
or stimulating their development depending on the 
intensity profile. It is interesting to note that the role of 
diffraction is the stronger, the larger the beam profile 
deviates from the Gaussian.  
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