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A noniterative method is proposed for reconstruction of coherent images 
distorted by the turbulent atmosphere. The method needs no reference source in the 
space of object. The method is based on the use of a spatiotemporal modulation of a 
sensing signal by a known function within the time interval of the frozen atmosphere. 
Such a modulation permits one to isolate time–constant phase perturbations of the 
signal field by the turbulent atmosphere. 

Various options are considered of the proposed active method. One of such 
options has been simulated. 

 
Holographic techniques for reconstruction of images, 

perturbed by the turbulent atmosphere, starting with the 

studies by Goodman and Waters,
1-3

 assume, in particular, 
the use of iterative (multicycle) techniques of forming the 
reference signal in the plane of the sensed target. In this 
case a reference source is actively formed, while the image 
itself is reconstructed passively. However, there can occur 
situations,3 in which the convergence of the iterative 
procedure cannot be reached. Naturally, the question arises 
whether it is possible or not to form a reference signal at 
the transmitting and receiving apertures that it could be 
actively controlled. If this is feasible one can avoid 
polycyclicity. 

The present study deals with the technique, which 
needs for neither polycyclic formation of the reference 
signal, nor statistical algorithms for a posteriori processing. 
It is based on the idea of using sounding signals of a 
complicated spatiotemporal structure. 

 

 
 

FIG. 1. Target, aperture, and field of phase distortions. 
 

Let a sounding signal of a certain spatiotemporal 
structure (Fig. 1) be formed in the plane of a combined 
transmitting–receiving aperture: 

 
εss(ρ, t) = Φ(ρ, t) . (1) 

 
Some possibilities of forming such a signal will be discussed 
below. Here ρ is the spatial coordinate in the aperture 
plane. In this case, within the Fraunhofer and the thin–

phase screen approximation
4

 the field formed in the plane of 
the target image will have the form 

 

 

Es(r′, t) = 
1
λR exp( )j 

kr′2

2R E′(r′) × 

 

× 
⌡
⌠dr exp( )j 

k
R r′r  exp( jϕ

a1
(ρ)) Φ(ρ, t) , (2) 

 

where λ is the wavelength, k = 2π/λ is the wave number, R 
is the range to a target, ϕ

a1
(ρ) describes the phase 

distortions introduced to the sounding signal by the 
turbulent atmosphere during its propagation towards the 
target, r′ is the spatial coordinate in the target plane and 
E(r′) is the image of the target. In our further discussion we 
shall assume the signal to be reconstructed have the form 
 

E(r′) = 
1
λR exp( )j 

kr′2

2R E′(r′) . (3) 

 

Denoting r = kr′/R, we reduce our mathematical model of the 
process to the Fourier transform. Taking the above 
designations into account one obtains the distribution of field 
scattered by the target over the receiving aperture in the form 
 

εs(ρ, t)
 

=

 

exp(jϕ
a2

(ρ))⌡⌠ dr exp(jrρ)Es(r, t) , (4) 

 

where ϕ
a2

(ρ) describes the phase distortions of the field 

occuring during the process of receiving the scattered field 
which, in general, differ from those taking place in 
transmitting the sounding signal. Based on relations (2) and 

(3), and the theorem of convolution,
5

 relation (4) can be 
given in the form 

 

εs(ρ, t) = exp(jϕ
a2
(ρ))⌡⌠ dρ′ε(ρ – ρ′) exp(jϕ

a1
(ρ)) Φ(ρ, t) , (5) 

 

where ε(ρ) is the spatial spectrum of the field E(r). 
Since the temporal dependence is introduced into the 

signal by an arbitrarily selected modulation (what makes the 
main idea of the active reconstruction), it may be eliminated 
by a transformation which lowers the rank of integral 
equation (5). In this connection the choice of a running δ–
function, for Φ(ρ, τ) is most obvious. However, the use of a 
weighted integration of the received signal such as, the 
procedure 
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ε(ρ, Δρ) = ⌡⌠ dtεs(ρ, t) Φ*(Δρ, t) = 

 

= exp(jϕ
a2

(ρ)) ε(ρ + Δρ) exp(jϕ
a1

(Δρ)) (6) 
 

seems to be more general. 
Assuming the function Φ(ρ t) to be orthogonal we have 

 

Φ(ρ, t) = ⌡⌠ dt Φ(ρ
1
, t) Φ*(ρ

2
, t) = δ(ρ

1
 – ρ

2
) , (7) 

 

where Δρ is the minor spatial vector in the aperture plane 
and δ(ρ) is the Dirac δ–function. 

Equation (6) contains two unknown functions of the 
coordinate ρ, of which the function ϕ

a2
(ρ) describes the 

multiplicative noise and (ε(ρ)) is the spatial spectrum of the 
sought–after image. We may, therefore, complete Eq. (6) to 
obtain a system of two equations by varying Δρ in the 
following manner 
 

⎩
⎨
⎧ε(ρ, Δρ) = exp(jϕ

a2
(ρ))ε(ρ + Δρ) exp(jϕ

a1
(Δρ)) ,

ε(ρ, 0) = exp(jϕ
a2

(ρ))ε(ρ + 0) exp(jϕ
a1

(0)) ,  
 (8)  

 

which takes the form 
 

⎩
⎨
⎧ψ(ρ, Δρ) = ϕ

a2
(ρ) + ϕ(ρ + Δρ) + ϕ

a1
(Δρ) ,

ψ(ρ, 0) = ϕ
a2

(ρ) + ϕ(ρ + 0) + ϕ
a1

(0)     (9)  

 
for the signal phase. By solving the system of equations (9) 
with respect to ϕ(ρ) we obtain 

 
ϕ(ρ + Δρ) – ϕ(ρ + 0) = ψ(ρ, Δρ) – ψ(ρ, 0) – (ϕ

a1
(Δρ) – ϕ

a1
(0)) .  

 (10) 
 
Note that the phase difference ψ(ρ, Δρ)–ψ(ρ, 0) is 
measurable, and it can be separated out using the signals 
ε(ρ, Δρ), and ε(ρ, 0), since 
 

ψ(ρ, Δρ) – ψ(ρ, 0) = arg(ε(ρ, Δρ) ε*(ρ, 0)) . 
 

One can see that in its meaning Eq. (10) is similar to the 
differential equation of the form 

 

dϕ(ρ)
dρ  = 

dψ(ρ, ρ′)
dρ′ ρ′=0

 – 
dϕ

a1
(ρ)

dρ ρ=0

 (11) 

 
the solution of which is quite evident 
 

ϕ(ρ) = 
⌡
⎮
⌠

0

ρ

dρ′′ 
dψ(ρ′′, ρ′)

dρ′ ρ′=0

 – 
dϕ

a1
(ρ)

dρ ρ=0

⋅ ρ + C . (12) 

 

Here C is the random phase; 
dϕ

a1
(ρ)

dρ ρ=0

 is the unknown tilt 

of the wavefront. 
Thus, the unknown differential constant (ϕ

a1
(Δρ)–ϕ

a1
(0)) 

related to 
dϕ

a1
(ρ)

dρ ρ=0

 results in a certain displacement of the 

image during its reconstruction what is insignificant for the 
problem under study. 

The proposed technique of active reconstruction of an 
image can be easily performed using a correlation detector, 
which inherently transforms Eq. (6). Of course, not only 
the correlation processing but also a properly designed 
filtering would yield the results described by Eqs. (8) and 
(9). Indeed, let a spatiotemporal harmonic of the form 

 

Φ(ρ, t) = exp(j(Ωρ – ωg)t) , (13) 
 

be chosen for Φ(ρ, t), where Ω is the spatiotemporal 
frequency and ωg is a frequency "addition". 

Substituting (13) into relations (2)–(4) in the plane of 
the receiving aperture, we obtain the signal in the form 

 

εs(ρ, t) = exp(jϕ
a2

(ρ))⌡⌠ dρ′ε(ρ – ρ′) × 

 

× exp(jϕ
a1

(ρ′)) exp(j(Ωρ′ – ωg)t) , (14) 
 

the temporal spectrum 
 

εs(ρ, ω) = ⌡⌠dt exp(jωt)εs(ρ, t) (15) 

 

of which takes the form 
 

εs(ρ, ω) = exp(jϕ
a2

(ρ))⌡⌠ dρ′ε(ρ – ρ′) × 

 

× exp(jϕ
a1

(ρ′)) δ(w + Ωρ′ – ωg) (16) 
 

if one takes relation (14) into account. By tuning the filter 
to the frequency ω

Δρ
, we obtain 

 

εf (ρ, t) = exp(jϕ
a2

(ρ)) exp(– jω
Δρ

t) × 
 

× exp⎝
⎛

⎠
⎞jϕ

a2⎝
⎛

⎠
⎞Ω(ω

Δρ
 – ωg)

⏐Ω⏐2  ε⎝
⎛

⎠
⎞ρ + ⎝

⎛
⎠
⎞Ω(ω

Δρ
 – ωg)

⏐Ω⏐2  . (17) 

 
Now, selecting 

 

⎩⎪
⎨
⎪⎧
Ω(ω

Δρ1
 – ωg)

⏐Ω⏐2  = Δρ,

Ω(ω
Δρ2

 – ωg)

⏐Ω⏐2  = 0, 

 (18)  

 

we arrive at a system of equations, similar to system (8). The 
temporal dependence can be eliminated, using, for example, a 
relevant homodyning. 

A qualitative analysis of the derived–above expressions 
allows one to conclude that the reconstruction of an image is 
performed by regulating the position of the spectrum of an 
estimated image, independently of the multiplicative noise. 

Because of the intrinsic properties of the Fourier 
transform5 the change in the position of the signal spectrum is 
equivalent to the presence of a linear phase shift in the signal. 
The latter effect may be achieved by varying the spatial 
coordinate of a point source of the sounding signal. This is the 
basic operation in the techniques of active interferometry.6 
Based on this approach one can construct, avoiding the stage 
of phase conjugation, quite different algorithm, which in 
certain sense corresponds to an asymptotic case of 
relations (1)–(18). 

Let the generator forming the sounding signal field 
emits two signals during the time interval of the frozen 
atmosphere 
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⎩⎪
⎨
⎪⎧εss1

(ρ) = d(ρ – Δρ),

εss
2

(ρ) = d(ρ – 0).  (19) 

 
Taking into account the presence of phase distortions ϕ

a1
(ρ) 

at propagation of sounding signals, the field in the target 
plane may be written in the form: 
 

⎩
⎨
⎧Es1(r) = E(r)⌡⌠dρ exp(jrρ) εss

1

(ρ)exp(jϕ
a1

(ρ)) =

 = E(r) exp(jΔρr) exp(jϕ
a1

(Δρ)) ,

Es2(r) = E(r)⌡⌠dρ exp(jrρ) εss
2

(ρ)exp(jϕ
a1

(ρ)) =

= E(r) exp(j0r) exp(jϕ
a1

(0)) .

 (20) 

 
As a result, in the plane of the receiving aperture we obtain 
 

⎩
⎪
⎨
⎪
⎧εs1(ρ) = exp(jϕ

a2
(Δρ)) ⌡⌠dρ exp(– jrρ) E(r) × 

× exp(jΔρr) exp(jϕ
a1

(Δρ)) =   

  = exp(jϕ
a2

(ρ)) exp(jϕ
a1

(Δρ)) ε(ρ – Δρ),

εs2(ρ) = exp(jϕ
a2

(Δρ)) ⌡⌠dρ exp(– jrρ) E(r) × 

× exp(j0r) exp(jϕ
a1

(0)) =    

  = exp(jϕ
a2

(ρ)) exp(jϕ
a1

(0)) ε(ρ – 0) .

 (21) 

 
Using a detector which records the sum of signals ε

c1
(ρ) and 

ε
c2

(ρ) we have 

 

⏐ε
c1

(ρ) + ε
c2

(ρ)⏐2 = ⏐ε
c1

(ρ)⏐2 + ⏐ε
c2

(ρ)⏐2 + 
 

+ ε
c1
* (ρ)ε

c2
(ρ) + ε

c1
(ρ)ε

c2
* (ρ) . (22) 

 
Then, separating the interference term by one of the 
available techniques, one obtains for its phase the relation 
 
ψ(ρ, Δρ) = ϕ(ρ – Δρ) – ϕ(ρ) + ϕ

a1
(Δρ) – ϕ

a1
(0) , (23) 

 

where 

 

ϕ(ρ) = argε(ρ) . (24) 
 

By passing to a limit in relation (23) one obtains 
 

dψ(ρ, ρ′)
dρ′ ρ′=0

 = – 
dϕ(ρ)
dρ  + 

ϕ
a1

(ρ)

dρ ρ=0

 . (25) 

 

Equation (25) is solved, like Eq. (23) relative to the 
function φ(ρ), that yields 
 

ϕ(ρ) = 
⌡
⎮
⌠

0

ρ

 dρ′′
dψ(ρ′′, ρ′)

dρ′ ρ'=0

 – 
dϕ

a1
(ρ)

dρ ρ=0

⋅ρ + C , (26) 

 

The unknown tilt of the wavefront 
ϕ

a1
(ρ)

dρ ρ=0

) again does 

not affect the quality of the solution of the principal 
problem on reconstruction of an image. 
 

 
 

FIG. 2. Modulus (a) and phase (b) of the initial signal. 
 

Figure 2a shows the distribution of modulus of the 
initial signal which is to be reconstructed. The general 
"field of view" contains 512 pixels. Figure 2b presents the 
simulated phase distribution of a signal reflected from a 
diffuse target. In their combination the modulus and the 
phase presented in Figs. 2a and 2b completely describe the 
initial field. It should be noted that in many problems on 
image reconstruction it is sufficient to extract information 
about the modulus alone. 

 

 
 

FIG. 3. Phase (a) and modulus (b) of the initial signal 
spectrum. 
 

Figures 3a and 3b present the modulus and the phase 
of the initial field spectrum what corresponds to the 
propagation of a signal through an empty space. Figure 4a 
illustrates a result of differential processing of the phase of 
a received signal, i.e., presents the derivative of the 
estimated phase. The result of integrating the differential 
phase is shown in Fig. 4b. Using the modulus of the 
spectrum ⏐ε(ρ)⏐ (Fig. 3a) and its reconstructed phase 
(Fig. 4b) the image (see Fig. 5) is reconstructed using the 
Fourier–inversion, which satisfactorily agrees with the 
initial one (Fig. 2a). 

 

 
FIG. 4. Phases of differential (a) and reconstructed (b) 
signal spectra. 
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It is pertinent to note that the algorithm for active 
reconstruction of images from a single–cycle sensing 
recording with the quadratic signal detection, as described 
by relations (19)–(26) and illustrated by the mathematical 
simulation, does not make the general approach (see 
relations (1)–(18)) unreasonable. Being a particular case of 
more general approach, the technique of single–cycle 
sensing and recording has, naturally, a limited applicability. 
The limitation arises because of the assumption that the 
radiation source is a point source in the plane of 
transmitting that, of course, limits the operation range. 

 

 
 

FIG. 5. Modulus of the reconstructed signal. 
 

As a reult it is advisable to employ the approach 
described by relations (19)–(26) at a relatively short distance. 
At the same time a more general approach presented by 
relations (1)–(18) should be preferred at longer distances 

Note also that the procedures of step–by–step 
integration of differential phase may be replaced by a  

parallel reconstruction using the least–squares technique, as 
was done in Ref. 7 in application to a shear interferometeric 
measurements. 

Thus, a technique of active reconstruction of images 
distorted by the turbulent atmosphere is proposed and 
verified by a mathematical simulation. The technique needs 
neither for a reference source in the plane of a target, nor 
for iterative algorithms for signal processing. 
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