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Some invariants and invariant relationships are derived for describing thermal 
blooming of both light beams propagating through a moving medium and light pulses 
propagating through a stationary medium. These invariants can be used for checking 
the results of numerical simulation of thermal blooming of optical radiation.  

 
The invariants of nonlinear self–action of optical 

radiation are known to be very important for problems of 
analysis of radiation properties and of data obtained by 
numerical simulations as well as for the construction of 
difference schemes. Computer simulation of thermal blooming 
of light beams has been used for many years for solving the 
atmospheric optics problems (see, e.g., Refs. 1–5). The 
invariant of these problems is the initial power (or energy) of 
optical radiation. In the case of stationary thermal blooming 
the other values have also been found that remained 
unchanged in the course of self–action,6 and the energy 
conservation laws derived for these values, have been 
generalized for the case of interaction of two beams 
propagating in the opposite directions.7 In contrast to these 
studies, we present the new integral invariant relations for 
thermal blooming of light beams propagating through a 
moving medium and of pulses propagating through a 
stationary medium.  

The process of thermal blooming of optical radiation in 
a transparent regular medium may be described, within the 
quasioptical framework of approximation, by a system of 
dimensionless equations 

 

∂A
∂z  + iΔ

⊥
A + iαTA = 0, LT = ⏐A⏐2 , (1) 

 

where A is the complex amplitude of the beam normalized by 
its peak intensity, z is the longitudinal coordinate measured in 
units of diffraction length (t

d
 = 2κa2), k is the wave number, 

a is the initial radius of the beam, Δ
⊥ = 

∂2

∂x2 + 
∂2

∂y2 is the 

transverse Laplacian operator, x and y are the transverse 
coordinates normalized by a, α is the ratio of the initial beam 
power to characteristic power of thermal blooming, T is the 
normalized change in temperature of the medium, and L is the 
linear operator depending on the relation between the 
parameters of the medium and those of the beam. We have 

 

L = 
∂
∂x , L = 

∂
∂t – χΔ

⊥
 , L = 

∂
∂t  (2) 

 

in the cases of stationary propagation of optical radiation 
through the moving medium and of the nonstationary self–
action with and without an account of thermal diffusion, 
respectively. The variable t in Eq. (2) is normalized time, 
χ characterizes the diffusion of heat from the region 
occupied by the beam. System of equations (2) must be 
completed by the initial and boundary conditions for A and 
T which have the form  

 

A = A
0
(x, y, t), A⏐

x=0, Lx
 = A⏐

y=0, Ly
 = 0, A⏐

t=0
 = 0 ; (3) 

 

for the complex amplitude of the beam, and  
 

T
x=0

 = 0, T
x=0, Lx

 = T⏐
y=0, Ly

 = T⏐
t=0

 = 0, T⏐
t=0

 = 0 (4) 

 

for temperature, in accordance with operator (2). In the 
case of stationary self–action, the complex amplitude is 
independent of time and the last condition of Eq. (3) is 
dropped. The symbols L

x
 and L

y
 in Eqs. (3) and (4) denote 

the boundaries of the considered region along the 
coordinates x and y.  

For simplicity, we first consider the case of stationary 
propagation of a slit–shaped beam through the moving 
medium (the coordinates (x, z)). Multiplying TA* – the 
equation of quasioptics and TA – the equation conjugate to it 
and integrating them over the transverse coordinate, we finally 
derive  
 

⌡⌠
0

L
x

 
 T 

∂⏐A⏐2

∂z  dx + 2 ⌡⌠
0

L
x

 
 ⏐A⏐2

 Im( ) A* 
∂A
∂x  dx = 0 . (5) 

 

Furthermore, integrating the equation describing changes in 
temperature and differentiating its left and right parts with 
respect to z, we easily derive the following relation from the 
equation of quasioptics:  
 

∂T
∂z  = 2 Im( ) A* 

∂A
∂x  (6) 

 

or  
 

T(z, x) = T(0, x) + 2 ⌡⌠
0

z

 
 Im( ) A* 

∂A
∂x  dξ . (7) 

 

Equation (5) then assumes the following form:  
 

⌡⌠
0

L
x

 
 
⎝
⎜
⎛

⎠
⎟
⎞

T(0, x) + 2 Im ⌡⌠
0

z

 
 A* 

∂A
∂x dη  

∂⏐A⏐2

∂z  dx +  

 

+ ⌡⌠
0

L
x

 
 ⏐A⏐2

 
∂
∂z 
⎝
⎜
⎛

⎠
⎟
⎞

T(0, x) + 2 Im ⌡⌠
0

z

 
 A* 

∂A
∂x dη  dx = 0. (8) 

 

Hence, we derive the integral equation  
 

I
1
 = ⌡⌠

0

L
x

 
 ⏐A⏐

2
 
∂
∂z 
⎝
⎜
⎛

⎠
⎟
⎞

T(0, x) + 2 Im ⌡⌠
0

z

 
 A* 

∂A
∂x dη  dx = const, (9) 

 

which is also equivalent to the equality  
 

I
2
 T2(z, L

x
) = const . (10) 
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Note that using Eq. (5), we may easily write another 
integral relation  

 

I
3
 = ⌡⌠

0

L
x

 
 
∂A
∂x

2
 dx + 2α ⌡⌠

0

z

 
 ⌡⌠

0

L
x

 
 ⏐A⏐2Im ( ) A* 

∂A
∂x   = 

 

dxdη = const . (11) 
 

In analysis of the regularities of propagation of a two–
dimensional beam along the coordinates ( x, y, z ), 
system (5)–(11) acquires a different form. Thus, we obtain 
instead of Eq. (5)  
 

⌡⌠
0

L
x

 
 ⌡⌠

0

L
y

 
 ⎩
⎨
⎧
T 

∂⏐A⏐2

∂z  + 

⎭
⎬
⎫

+ 2 
⎝
⎛

⎠
⎞∂T

∂x Im ( )A* 
∂A
∂x  + 

∂T
∂y Im ( ) A* 

∂A
∂y dxdy = 0 . 

(12) 
 

Then I
3
 is reduced to the form  

 

I
3
 = ⌡⌠

0

L
x

 
 ⌡⌠

0

L
y

 
 {⏐∇⊥

A⏐2

 
+
 

2α ⌡⌠
0

z

 
 ⎝
⎛∂T
∂x Im ( ) A* 

∂A
∂x  + 

 

⎭
⎬
⎫

+ 
⎠
⎞∂T

∂y Im ( )A* 
∂A
∂y  dη  dxdy , ∇

⊥
 = { }∂

∂x, 
∂
∂y  , (13) 

 

and the relation  
 

I
2
 = ⌡⌠

0

L
x

 
 ⌡⌠

0

L
y

 
 T ⏐A⏐2 dxdy +  

 

+ 2⌡⌠
0

z

 
 ⌡⌠

0

L
y

 
 
∂T
∂y x=Lx⌡⌠

0

L
x

 
 Im ( ) A* 

∂A
∂x  dx dy dη (14) 

 

is derived for I
2
, which is more complicated then Eq. (10). 

The relation for I
1
 is reduced similarly.  

In the case of nonstationary thermal blooming (when 

L = 
∂
∂t or L = 

∂
∂t – χ Δ

⊥
 is chosen from Eq. (2)) Eq. (13)  

remains valid at any arbitrary time and in general. However, 
we fail to write any other integral invariants.  

In conclusion, it should be noted that numerical 
experiments were made for a nonlinear symmetric scheme,8 
aimed at studying the conservation of I

3
 (see Eq. (13)), for 

a beam propagating through the moving medium. In 
particular, setting ⏐α⏐ = 20, z = 0.5, the number of grid 
nodes along the transverse coordinates N

x 
= N

y 
= 32, and 

along the z axis N
z 
=10, we found that I

3
 changed by no 

more than 1% of its initial value at z = 0 if the relative 
accuracy of the iterative process was ε = 0.01. The beam 
profile upon entering the nonlinear defocusing medium was 
prescribed to be Guaussian  
 

A
0
(x, y) = exp ( – 2(x – L

x
/2)2 – 2(y – L

y
/2)2) , (15) 

 
where L

x 
= L

y 
= 8. Results of calculations indicated that 

the invariant relation (13) was valid for the symmetric 
difference scheme.  
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