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The shifts of a spectral line center and shapes of the line wings are shown to be 
interrelated.  

 
The spectral line half–width γ and shift ε of its center 

ω
0
 are a subject of numerous measurements and calculations 

(see, for example, Refs. 1–7). Normally, the quantities γ 
and ε are used in the well–justified symmetrical Lorentzian 
expression describing a central portion of a line contour 
(here and below we consider collisions of molecules and 
assume the gas to be sufficiently rarefied) 

 

f ∼ 
γ

(ω – ω
0
 – ε)2 + γ2

 , (1) 

 

where ω is the frequency of the field, and f is normally 
associated with a contour of an isolated spectral line. 

The asymmetry of the contour is at the same time less 
studied.8,9 Now we are going to discuss the line contour 
periphery and it could seem that the asymmetry, on the one 
hand, and the half–width and the line center shift, on the 
other hand, are quite independent. 

However, these quantities are closely related, this 
follows from the most general definition of the absorption 
coefficient κ(ω). Then normally standard relation is 
considered, i.e.,  
 

κ(ω) ∼ 
1
π Re ⌡⌠

0

∞

 
dt(expiωt)

 
Sp ρS–1(t) M S(t) M , (2) 

 

where S(t) and ρ are the evolution operator (t is time) and 
the Gibbs matrix of density for the exact Hamiltonian H 
(an "active" molecule interacting with the field + "buffer" 
molecules + centers of mass + intermolecular interaction 
U), M is the dipole moment of an "active" molecule, and 
Sp is the Spur operation over all variables of H. The 
problem (2) is related to the kinetic equation10,11  
 

ρ(1)M + iω Q(ω) = (1/ih
–

) L
∧

1
Q + Γ

∧
(ω)Q  

 

with the superoperator of relaxation 
 

Γ
∧

 = 

1

h
–2⌡⌠

0

∞
 
dt

 
Sp′L

∧
(1 – P

∧
)
⎝
⎛

⎠
⎞expiωt + 

t

ih
– (1 – P

∧
)L
∧

(1 – P
∧
)L
∧
′R. (3) 

 
The operator Q over the variables of an "active" 

molecule with the Hamiltonian H
0
, density matrix ρ(1), and 

quantum indices a, b,... is defined so that λ(ω) = ∑
a,b

 QabMab. 

The value QabMab ≡ κj may be interpreted as the "absorption 

coefficient within an isolated absorption line centered at the 
frequency ωj". This term does not imply an approach (e.g.,  

ignoring possible interference of quantum states) simply, the 
summing over quantum indices of H

0
 is separated out from the 

Sp operation in Eq. (2), and j denotes the combination of 
these indices for the corresponding transition. 

The cap sign "∧" in Eq. (3) denotes the superoperators. 
Thus, if x and y are ordinary operators with matrix elements 

xab and yab the equality y = Γ
∧
x means yab = ∑

a′,b′

 Γab, a′b′ xa′b′. 

Then L
∧

1
x = [H

0
, x], L

∧
x = [H, x], L

∧
′x = [U, x] and the meaning 

of "∧" symbol is generalized on arbitrary operators; R is the 
density matrix of the subsystem "buffer" molecules + centers 
of mass, and Sp′ is Spur operation over these matrix variables. 

It is just the projecting superoperator P
∧
x = PSp′x that 

provides for validity of the rigourous kinetic equation.10–13  
If one considers only the physical aspect of the problem 

it is much easier to explain the following idea of the approach 
proposed here for the case of diagonal terms 
Γab,a'b' = Γabδaa'δbb' that means the absence of interference. 

By the way, this approach does not affect the final results, as 
will be shown below. Now, when the term "sum of 
frequencies" is omitted (this approach is typically used with 
optical waves), Γab(ω) = Γab′ (ω) + iΓab′′ (ω) and the shape of jth 

line is 
 

fi(ω) = 
Γ  j′ (ω)

(ω – ωj – Γ j′′ (ω))2 + Γ  j ′
2 (ω)

 . (4) 

 

The relationship between expression (1) and (4) is quite 
obvious. Thus at resonance (ω g ωj) 

 

Γ j′(ωj) = γj,  (ωj) = εj . (5) 
 

Standard analytic continuation of function (3) over ω results 
in a regular function in the upper complex half–plane that 
together with the conditions Γ j′(– ω) = Γ j′(ω) and  

Γ j′′(– ω) = – Γ j′′(ω) following from Eqs. (2)–(4) gives  
 

Γ j′′(ω) = 
2ω
π  P 

⌡
⌠

0

∞

 
Γ j′(ω′) dω′

ω′2 – ω2  . (6) 

 

As in the dispersion relations of electrodynamics,14 it is just 
relation (6) which is pragmatic, since physically relations (5) 
mean that j′ is always positive while Γ j′′ can change its sign. 

By substracting Γ j′(ω) from j′(ω′) integral (6) is reduced to the 

Riemannian that yields, according to relations (5), the 
following relation for the line center shift: 
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εj = 
2ωj

π ⌡
⌠

0

∞

 
Γ j′(ω) – γj
ω2 – ωj

2  dω . (7) 

 

As the analysis has shown, one can replace Γ j′′(ω) by εj 

in relation (4) at any shifted frequency (ω – ωj). Therefore, 

the use of Γ j′′(ω) becomes meaningful only at resonance 

(ω g ωj). This fact underlines the leading role of j′(ω) in 

constructing the line contour.  
Now one can formulate the principal result of 

interpreting expression (7) as follows. The spectral 
properties of a line profile (with the asymmetry being 
necessary among them) govern the shift of its center. 

This statement can be made very clear if one uses the 
approach10 to the kinetic equation. In this case Γ j′ = Ij(ξ) + 

+ ξ2Γ j
(±)(⏐ξ⏐), where ξ = ω – ωj and the signs (±) emphasize 

the fact that Gj', to say generally, is different in the regions to 

the left and to the right from the point ξ = 0. For a relatively 
small ξ (⏐ξ⏐ < γj) the even function Ij(ξ) is equal to γj + O(ξ2) 

and Γ j
(±) = O(1/γj). For this reason there are no any 

mathematical problems with the point ξ = 0 as well as with 

the representation ⌡⌠
–∞

+∞

 dξ = ⌡⌠
0

∞

 dξ + ⌡⌠
–∞

0

 dξ being followed by 

the change of variable ξ to – ω in the second integral (it is 

obvious that integration over ξ gives ⌡⌠
–ξ

∞

 dξ g ⌡⌠
–∞

+∞

 dξ). 

Physical meanings of terms in the expression for j′ 

differ quite distinctly.10 Thus the first term dominates at 
small ⏐ξ⏐, while the second at large ⏐ξ⏐ values. 

Just this circumstance makes it possible to construct a 
spline that combines the asymptotics of small and large 
frequency shifts,10 as shown in the figure. 

After such simple transformations (an additional 
approach 2ωj/(2ωj + ξ) g 1 is quite obvious) one obtains 

from Eq. (7) that 
 

εj = 
γj
π ln 

ξ j
(+)

ξ j
(–) + 

1
π ⌡
⌠

ξ j
(+)

∞

 

ψ j
(+)(ξ) dξ

ξ  – 
1
π ⌡
⌠

ξ j
(–)

∞

 

ψ j
(–)(ξ) dξ

ξ . (8) 

 

 
 

FIG. 1. 
 

Thus, one can see that formula (8) explicitly describes 
the relation of the line center shift to the line shape symmetry. 
For example at ξ j

(+) = ξ j
(–) and ψ j

(+) = ψ j
(–) the value εj = 0 and 

vice versa if εj ≠ 0 the line wings to the left and to the right 

from ξ = 0 have different shapes. The asymmetry of the line 
contour is associated with the line wings since, as has already 
been shown, the function Ij is symmetric relative to ξ = 0. 

An empirical approximation of the form εj = αγj – β 
from Ref. 15, where the data of half–widths and shifts of 
water vapor absorption lines in the mixtures with N

2
, O

2
, and 

Ar were statistically analyzed, is a good experimental proof of 
relation (8). Constant values α and β may be reasonably 
interpreted in terms of relation (8). 

This general conclusion on the relationship of a line 
under and asymmetry of its wings in no ways can be affected 
by interfering of the quantum states, i.e., when one cannot 
neglect nondiagonal matrix elements (3). Really, the main 
procedure of the above analysis is the use of dispersion 
relations whose derivation requires only integral (3) to be of 
the Fourier type with the integration over a semi–infinite 
interval. As well known (see Refs. 14 and 16) this fact is 
backed by the principle of causality that is essential when 
deriving the kinetic equation. Mathematical proofs of this 
statement can be found in Refs. 10–13. As the analysis of 
Eq. (3) shows the interference of quantum states does not 
affect the inherent symmetry of Ij as well. This means that the 

integral (7) is, as formerly, determined by the line contour 
periphery. 
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