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Qualitative analysis of the simplest ozone cycle equations without radiation is 
performed. Complete phase portraits of the systems are drawn for both fixed and 
arbitrary concentration of the molecular oxygen. Some peculiarities of time behavior 
of the concentration under different initial conditions are discussed for both cases.  

 
INTRODUCTION  

 

The ozone cycle reactions in the atmosphere have 
recently become a topic of an increase attention, because the 
question on irreversibility of changes taking place in the 
ozone layer unexpectedly became a question of wide public 
discussions. Computer simulations of vast systems of 
equations for reactant concentrations can give only limited 
information about a probable process evolution without 
answering the above question. The answer to this question, 
as well as to other similar questions concerning the systems 
described by nonlinear differential equations may be often 
obtained using a qualitative theory of differential equations, 
or, in other words, the theory of dynamical systems, see, 
e.g., Ref. 1. A result of qualitative analysis can be the 
phase portrait of the system under study which includes all 
possible types of its solutions and their dependences on the 
initial conditions. Therefore addressing to the theory of the 
dynamical systems as a mean for studying the ozone cycle is 
quite opportune and justified. It would be logical to obtain 
first of all the phase portrait of the simplest reaction cycle 
ensuring the presence of the ozone in the atmosphere, the 
so–called Chapman ozone cycle:2 
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2
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To the authors' knowledge, no complete treatment of the 
problem from the point of view of qualitative analysis is 
available in the literature, though some its aspects have 
been considered in Refs. 3–5. However, acomplete phase 
portrait even of the simplest system has not been obtained 
so far. In this situation we have repeated qualitative 
consideration6,7 of the system of three equations which 
describe cycle (1) within the framework of the investigation 
program on qualitative studies of the climatic processes. The 
steady states in the finite part of the plane and at infinity 
were found and the character of the trajectory behaviors in 
their vicinity was determined. A qualitative structure of the 
system appeared to be quite rich and gave reasons to assume 
the existence of nontrivial trajectories behavior in a 
physically meaningful region. 

Aiming our further studies at finding the separatix 
behavior on the whole plane that is necessary for obtaining  

a complete phase portrait in this paper we consider a 
particular case of the system of reactions (1), that is, 
without radiation. In this case the phase portrait can be 
drawn rather simply. Such an approach is first of all aimed 
at demonstrating the advantages of a qualitative analysis. 
Moreover, such a phase portrait can be practical, for 
example, for studying the ozone dynamics during nighttime. 

In the case of absence of radiation from the system of 
reactions (1) only two last reactions are to be taken into 
consideration. If the oxygen atmosphere is considered as a 
closed homogeneously isothermic reactor of ideal mixing the 
system of nonlinear differential equations for concentrations 

([O
2
] = x~, and [O] = y~, and [O

3
] = z~ M = O

2
) is given by 

 

x~
⋅

 = κ
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3
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⋅
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 x~2y~ – κ

3
y~z~ 

z~
⋅
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2
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3
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For the sake of convenience of further discussion let us 
introduced new variables  
 

t = αt~ ,  x = βx~ ,  y = γy~ ,  z = δz~ , (3) 
 
where 
 
α = κ2

3
/κ

2
 , β = γ = δ = κ

2
/κ

3
 . 

 

Then the system of equations (2) is reduced to the 
dimensionless form 
 

x
⋅

 = – x2y + 2yz ,  

y
⋅

 = – x2y – yz ,  

z
⋅

 = x2y – yz . (4) 
 

Usually the concentration of O
2 molecules exceeds those of 

O and O
3 

by several orders of magnitude. This fact allows 

one to consider it to be unchanged during the reaction. 
Similar approximation is often used in the literature, and 
following its logic in the case without radiation the system 
of equations (4) should be replaced by 
 

y
⋅

 = – y(a + z) ,  z
⋅

 = y(a – z) . (5) 
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Below, systems (4) and (5) will be considered separately. 
 

THE CASE OF CONSTANT O
2
 CONCENTRATION 

 
The system of equations (5) is a dynamical system on the 

plane and the methods of its qualitative analysis are well 
known (see, e. g., Refs. 1 and 8). A brief description of the 
key elements of the qualitative analysis are given, at the 
editor's request, in Appendix. Its a peculiar feature of the 
system of equations (5) that the right sides of its equations 
have a common factor y. Let us consider the system 

 

y
⋅

 = –(a + z) ,  z
⋅

 = a – z , (6) 
 
which unlike the system of equations (5) does not contain a 
common factor. It is evident, that the steady states of 
system (6) are also those of system (5). The system (6) has 
no steady states in a finite part of the plane. The 
investigation done for infinite points with the use of the 

Poincare' transformation (y, z → u, ν) gives two steady 
states at infinity, one of them B being a degenerative node 
while another one C, being the saddle–node with a stable 
node sector. The trajectory behavior in the vicinities of 
these points is shown in Fig. 1.  
 

 
 

FIG. 1. Trajectory behavior in the vicinity of singular 
points at infinity for system (6). 
 
This information is sufficient to draw the phase portrait of 
the system under consideration. It is shown in Fig. 2a. 
Remind that the phase portrait is drawn in a circle, and the 
entire plane (y, z) is transformed into the interior part of 
the circle. The infinitely remote points correspond to the 
points on the circle circumference. The vicinities of the 
points at infinity being divided into two parts by the 
"equator" u = 0 are transformed into the vicinities of 
diametrically opposite points of the circumference (see, 
e. g., σ+ and σ– vicinities of the point C in Figs. 1 and 2a). 
The arrows in the figure indicate the direction of motion 
along the trajectories. Such a transformation conserves the 
qualitative behavior of trajectories and yields a pleasant 
visualization. The most distinctive feature of the phase portrait 
is the existence of the separatrix (C′aC′′) dividing the phase 
space into two parts. The separatrix equation ua = v in the 
(u, v) coordinates has the form a = z in the (y, z) coordinates. 
The transition of trajectories through the separatrix is 
forbidden. The appearance of trajectories in one of these parts 
is determined by initial conditions. For an abstract system 
described by Eqs. (6) all the trajectories run away to infinity. 
When the variables have a physical meaning of concentrations 
only the first quadrant is accessible for the system. There are 
also two regions in it divided by the separatrix. The 
trajectories terminate at the quadrant boundaries when the 
concentration of y, i.e., of the atomic oxygen, is exhausted. 

 
 

 a b 
 

FIG. 2. a) Phase portrait for system (6). b) Phase 
portrait for system (5), which in contrast to system (6) 
includes the common factor y. 
 

The phase portrait of system (5) can be drawn using 
the results obtained for system (6). To the stationary 
points of the system (6) the points are added which 
appear when the common factor in Eqs. (5) is equal to 
zero, y = 0. In the given case these are the points of the z 
axis. Thus, we obtain the phase portrait of system (5) 
from that of system (6) by denoting the z axis as a 
singular line and changing properly the direction of 
motion along the trajectories (see Fig. 2b). Difference 
between the data presented in the first quadrant of 
Figs. 2a and b is in time behaviors of the system. Thus, 
in the case 2b the points on the z axis are stable 

stationary states, so that at these points y
⋅

 = 0, z
⋅

 = 0 
while in the case 2a the system approaches the points of 
the z axis with nonzero velocity. 

Systems (5) and (6) can be integrated exactly. Their 
variables y and z satisfy the equation 

 

dz
dy = 

z – a
z + a  

 

which has the function 
 

y = y
0
 + (z

0
 – a) + 2a ln

⎝
⎛

⎠
⎞z – a

z
0
 – a   

 

as its solution under the initial conditions t = t
0
, z = z

0
, 

and y = y
0
. This solution is shown in Fig. 3. The straight 

line z = a is the asymptote for the integrated curves. An 
intercomparison of the exact solution (Fig. 3) and the 
phase portrait (Fig. 2) convinces that the phase portrait 
gives a complete information about the system behavior 
except for quantitative characteristics though inessential 
for a qualitative interpretation. 
 

 
 

FIG. 3. Exact solutions of systems (5) and (6) in the 
(y, z) plane. 
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THE CASE OF AN ARBITRARY O
2
 CONCENTRATION 

 
When solving system (4) it is necessary to take into 

account the limitations imposed on the concentrations by 
the conservation of the number of atoms during the 
reaction. In the case considered here we use the only 
conservation law 

 
2x + y + 3z = A . (7) 
 
The use of Eq. (7) allows one to obtain from Eq. (4) the 
system of two differential equations for two chosen 
variables. Thus, the system describing the O and O

3
 

evolution is  
 

⎭
⎬
⎫y

⋅

 = (y/4)(–A2+ 2Ay +(6A – 4)z – y2– 9z2– 6yz)

z
⋅

 = (y/4)(A2– 2Ay – (6A + 4)z + y2+ 9z2+ 6yz)
 , (8) 

and the systems describing the evolution of both O
2
, O

3
 and 

O
2
, O can be reduced to the forms 

 

⎭⎪
⎬
⎪⎫x

⋅

 = (– A + 2x + 3z) (– 2z + x2)

z
⋅

 = (– A + 2x + 3z) (z – x2)   
 , (9) 

⎭⎪
⎬
⎪⎫x

⋅

 = (y/3) (2A – 4x – 2y – 3x2)

y
⋅

 = (y/3) (– A + 2x + y – 3x2)
 , (10) 

 

respectively. Their phase portraits corresponding to the 
quadrants with positive concentrations are shown in Fig. 4. 
These portraits clearly demonstrate certain peculiarities in the 
concentration behavior under different initial conditions. First 
of all there appears a possibility of elucidating how the 
assumption on the O

2
 concentration constancy affects the 

qualitative behavior of the system. To do this let us compare 
the curves shown in Figs. 2b and 4a.  
 

 
 

 a b c 
 

FIG. 4. Fragments of phase portraits of systems of equations: a) (8), b) (9), and c) (10). 
 

 
 

 a b c 
 

FIG. 5. Variants of time behavior of concentrations for systems in the (y, z) plane with constant dashed curve) 
and arbitrary (solid curve) concentration of O

2
 for A = 1. a, b) x

0
2 = 0,0025 and c) x

0
2 = 0,16. 

 

 
 

FIG. 6. Variants of time behavior of concentrations for the system of equations (9). 
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The number and the character of steady states remain 
unchanged, however their location becomes essentially 
different. For example, the saddle node moves from the 
infinity to the finite part of the plane, and the node points at 
the infinity are now in different quadrants. If the case of 
constant O

2
 concentration there are two regions in the first 

quadrant divided by the separatrix, in the case of an arbitrary 
O

2
 concentration we have as many as three such regions 

denoted in Fig. 4a by the figures 1, 2, and 3. Existence of a 
conservation law in the case of an arbitrary O

2
 concentration 

imposes some limitations on the range of concentration 
variations. Thus, for example, in Fig. 4a, the permissible 
region of the phase space is restricted from above with the 
straight line 3z

0
 + y

0
 = A – 2x

0
 = B ≤ A. For this reason the 

region 3 is not permitted for the given system. In the case of a 
constant [O

2
] there are no similar restrictions. Figure 5 

illustrates the time behaviors of systems (5) and (8) with 
A = 1 under different initial conditions. The graphs show the 
results of numerical simulations that have been done for these 
systems. However, their qualitative behavior immediately 
follows from the phase portraits and the initial conditions for 
the above–illustrated examples were chosen using these 
qualitative pictures. The data presented in Fig. 6 underlines 
once more that the information that can be extracted from the 
phase portraits is quite sufficient to distinguish between 
different types of trajectory behavior. Shown in this figure are 
the variants of time behavior of the trajectories from different 
parts of the physically allowed region (see Fig. 4b, in which 
the relevant initial conditions are indicated by crosses). 

 
CONCLUSION 

 
The above results clearly shown that the phase 

portraits give quite a complete information about the 
trajectories of a system under consideration, and show the 
regions with qualitatively different trajectory behaviors 
depending on the initial conditions and the tendencies in 
the long–term evolution of the solutions. Note that such a 
great bulk of information could not be obtained by any 
other method. 

In addition to the illustration of some possibilities of a 
qualitative analysis the investigation of the ozone cycle 
equations in the absence of radiation allows one to arrive at 
the following conclusions. Solutions of the system of 
equations (5), at a constant O

2
 concentration are monotonic 

functions of time in a physically permissible region. 
Solutions of the system of equations (8) at an arbitrary O

2
 

concentration show under some initial conditions 
nonmonotonic time behavior of the O

3
 concentration. The 

atmospheric O
2
 concentrations correspond to the region in 

the phase space near the origin of coordinates where 
solutions of systems of equations (5) and (8) are practically 
indistinguishable. Nontrivial concentration behavior in the 
system of equations (8) may be interesting for studying the 
processes in chemical reactors. The results obtained in this 
paper will surely be used in our further studies of the ozone 
cycle in the presence of radiation. 

 
APPENDIX 

 
Let us consider the system of two nonlinear 

differential equations 
 

⎭⎪
⎬
⎪⎫x

⋅

 = P(x, y)

y
⋅

 = Q(x, y)
 , (A1) 

 

the right sides of which are independent of time explicitly 
and are defined on the entire plane (x, y) or in some region 
G of the plane. Such a system satisfying the conditions of 
the existence and uniqueness of the solutions is referred to 
as an autonomous dynamic system of the second order in the 
region G that can coincide with the entire (x, y) plane. 
Every pair of (x, y) coordinates characterizes a state of the 
system. The set of all states of the system spans its phase 
space. Under given initial conditions the point b of the 
phase space is moving along a curve named the phase 
trajectory. Only one phase trajectory passes through a point 
in the phase space. The points where 

 
P(x, y) = 0 ,  Q(x, y) = 0 , (A2) 
 
i.e., where the state of the system does not change with 
time, are steady states of the system. A steady state itself is 
a separate trajectory. The periodic solutions are obviously 
represented by closed trajectories. 

By specifying the dynamical system in the region G we 
thereby specify a set of trajectories, or, in other words, 
divide the region G into trajectories.  

When imaging the plane into itself the type of 
trajectories can significantly change. Let us choose, among 
possible images, the so–called topological images of the 
plane into itself which are in the one–to–one relation with 
each other and are the two–way continuous images of the 
plane. There exist such characteristics of the division into 
trajectories which remain unchanged under topological 
imaging, or, as they say, topologically invariant. Thus, the 
closed trajectories remain closed under topological imaging. 
The number and type of steady states, mutual location of 
closed and unclosed trajectories etc. also remain unchanged. 

Qualitative analysis of a dynamical system or, what is 
the same, qualitative picture of the phase trajectories 
implies finding of all properties of a division into 
trajectories which are topologically invariant. 

Qualitative analysis means seeking for the number and 
types of steady states in the finite part of the plane and at 
infinity, as well as for the existence of limit cycles and 
location of separartices. The coordinates of steady states are 
found from Eqs. (A2). If at a small perturbation, which 
displaces the system from a steady state, the imaging–it 
point does not leave the steady state, it is stable. As to an 
unstable state, the point leaves it being once displaced from 
it. The question on stability of a steady state (x

0
, y

0
) is 

resolved with the help of the first Lyapunov method. 
By expanding the right sides of Eqs. (A1) into series 

over deviations from a steady state and transferring the 
origin of coordinates into the reference state from Eq. (A1) 
we obtain  
 

dξ/dt = aξ + bη + ϕ(ξ, η) ,
dη/dt = cξ + dη + ψ(ξ, η) , (A3) 

 

where ξ = x – y
0
, η = y – y

0
, a = Px′(x0

, y
0
), b = Py′(x0

, y
0
), 

C = Qx′(x0
, y

0
), d = Qy′(x0

, y
0
), and the functions ϕ and 

ψ involve the terms with the power not lower than the 
second order of ξ and η. The general solution of the system 
of equations (A3) excluding nonlinear terms has the form 
 

ξ = C
1
e
λ
1
t
 + C

2
e
λ
2
t
,

η = C
1
λ

1
e
λ
1
t
 + C

2
λ

2
e
λ
2
t
,
 (A4) 

 

where λ
1
 and λ

2
 are the roots of the so–called characteristic 

equation 
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λ2 – Tλ + Δ = 0 , (A5) 
 

with T = a + d and Δ = ad – bc. At Δ ≠ 0 a steady state is 
simple. The following types of simple steady states are 
possible: 

1. Δ > 0, T2 – 4Δ > 0.  The roots of the characteristic 
equation are real and have the same signs. The steady state 
is a stable node when λ

1
 < 0 and λ

2
 < 0 and the unstable one 

when λ
1
 > 0 and λ

2
 > 0 (see Fig. 7a). Arrows on trajectories 

indicate the direction of time. It can be seen from 
relations (A4) that in the first case the coordinates of the 
representative point remain to be in the vicinity of a steady 
state, and in the second case they are removed from it 
unrestrictedly. 

 

 
 

FIG. 7. Types of steady states: a) stable node, b) saddle, 
c) unstable focus, d) center, and e) stable limit cycle. 
 

2. Δ < 0. The roots of the characteristic equation are real 
and have different signs: λ

1
λ

2
 < 0. The corresponding steady 

state is a saddle. In this case there are four singular phase 
trajectories, the so–called saddle separatrices, along two of 
them the representative point approaches the steady state, and 
along the other two the point removes from it (see Fig. 7b). 
When moving along the trajectories different from the 
separatrices the representative point eventually leaves the 
steady state. Thus the saddle is an unstable steady state. The 
separatrices divide the phase space into parts, so that the 
trajectories cannot penetrate from one part into the other. 

3. Δ > 0, T2 – 4Δ < 0 for T ≠ 0.  The roots of the 
characteristic equation are complex conjugate, and their real 
parts are nonvanishing. The steady state is a focus stable in 
the negative real parts and unstable in the positive real parts 
(Fig. 7c). The trajectories are spirals. They obviously 
correspond to a periodic motion with varying amplitude. 
When all roots are imaginary the steady state is called the 
center. The trajectories in the vicinity of a steady state are 
closed and correspond to periodical motions with an amplitude 
given by the initial conditions. 

In nonlinear systems closed trajectories can also exist 
whose characteristics is independent of the initial conditions 
being an inherent property of the system itself. Similar 
trajectories are known as limit cycles. The trajectory behavior 
in the vicinity of a limit cycle is shown in Fig. 7e. The 
methods of finding the limit cycles are, to a certain extent, the 
skill problem. 

In the case Δ = 0 the steady states are too complicated. 
For studying their stability it is not enough to use equations 
of the first approximation (A3), and a more detailed 
consideration is required. 

The set of phase trajectories forms the so–called phase 
portrait of a dynamical system. Figures 7a–e, show the 
examples of the phase portraits. 

The above methods allow one to determine a system 
behavior in the finite part of the plane. To obtain the entire 
picture it is needed to examine the infinitely removed points of 
the plane as well. When the right sides of Eqs. (A1) are 
polynomials this can be done using the standard Poincaré 
transformations. These transformations are explained in Fig. 8.  

 

 
 

FIG. 8. Poincaré transformations. 
 

Every point of the plane is put into correspondence with two 
points M′ and M′ located on the sphere of unit radius 
touching the plane at the origin of coordinates at the 
intersection of the sphere with a straight line connecting the 
point M with the center of the sphere. The points on equator 
correspond to infinitely removed points of the plane. The 
finite part of the plane is topologically involved into the 
sphere surface, i.e., the number and the character of singular 
points is conserved on the sphere. However, there can appear 
new singular points on the equator. The transformation 
x = 1/z′, y = u/z′ allows one to study the singular points 
lying on the equator except for the "ends" of the y axis. The 
plane touching the sphere where u and z′ are the Cartesian 
coordinates is perpendicular to the (x, y) plane and parallel to 
the y axis. For studying the ends of the y axis (the points D 
and D′) it is necessary to use the transformation x = ν/z′ and 
y = 1/z′. In this case the plane (ν, z′) will be parallel to the x 
axis. The transformed systems of equations are further 
investigated for establishing the existence of a steady state 
using the above–described methods. The lower hemisphere is 
then projected orthogonally on the circle K on the (x, y) 
plane. In this way the entire phase portrait, i.e., the picture of 
singular points and trajectories together with the infinity is 
obtained in the interior of the circle. The phase portrait 
actually represents the complete qualitative information about 
the system, in other words, about possible types of motion and 
the initial conditions under which they can occur. 
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