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The echo�signal power in pulsed laser sounding of the surface with complicated 
scattering phase function through the atmosphere is studied. The expression is derived 
for the echo–signal power when the surface with scattering phase function comprising 
diffuse and quasispecular components is sounded through the optically dense aerosol 
atmosphere. It is shown that the echo–signal shape can depend strongly on the 
relative contributions of diffusive and quasispecular components. 

 
Laser sounding of the surface with complicated scattering 

phase function comprising quasispecular and diffusive 
components for the case of continuous exposure was considered 
in Ref. 1. 

Below the energy parameters of the echo�signal are 
studied in pulsed laser sounding of the surface with 
complicated scattering phase function through the atmosphere. 

Let the sounded surface be characterized (for the case of 
continuous exposure) by the brightness Jc(R, m) (see Ref. 1) 
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where E(R) = AEs(R); Es(R) is the illumination of the surface 

from the source; A is the reflectance; α and β are the 
coefficients determining the relative contributions of diffusive 
and quasispecular reflections; Δ is the parameter characterizing 
the angular width of the scattering phase function of the 
quasispecular component of reflection; n is the parameter 
characterizing the angular width of the scattering phase 
function of the diffusive component of reflection; (θ, θ0) and 

(ϕ, ϕ0) are zenith and azimuth angles of observation and of the 

reflected radiation maximum (for the quasispecular component 
of reflection). The angles θ0 and ϕ0 are related to the 

corresponding angles θs and ϕs, which describe the direction of 

incident radiation by the laws of geometric optics.  
Let us assume that the scattering surface is sounded by a 

pulsed signal through the atmosphere. The brightness J(R
∼
, m∼

, t) of radiation arriving at the receiver2 can be determined 
from the distribution of the brightness J(R, m, t) at the 
scattering surface S. Then, using the reciprocity theorem in 
the scattering medium2 and the results derived in Ref. 3, we 
can derive in the small–angle approximation the integral 
expression for the power recorded by the receiver in pulsed 
sounding (we assume that shading of surface elements is 

negligible and J(R, m, t) = Jc(R, m) f ⎝
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where Jr(R, m) is the brightness of radiation from the 

"fictitious source" (with the parameters of the receiver) at the 
point R of the surface S for the case of continuous exposure3; 
θr is the angle between the normal to the surface S and the 

direction to the receiver; rs and rr are the vectors describing 

the positions of the source and the receiver; f(t) describes the 
sounding pulse shape.  

In the case of the homogeneous scattering atmosphere 
with strong elongation of the scattering phase function, when 
the angle, at which the receiving aperture is observed from the 
points of the scattering surface, is much smaller than the 
angular width of the scattering phase function of radiation 
reflected from the surface and the field–of–view angle of the 
receiver, Eq. (2) for the power recorded by the receiver takes 
the form (assuming that the sounded surface is flat and 
coincides with the XOY plane while the source, the receiver, 
and their optical axes lie in the XOZ plane and using the 
results obtained in Refs. 3–5) 
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R′ ={Rx cosθs, Ry} , R
′′ = {Rx cosθr, Ry} ; 

 

where Es(R) and Er(R) are the illuminations from the real 

and "fictitious" (with the parameters of the receiver) 
sources, respectively;3,4 Ls and Lr are the distances from the 

source and the receiver to the surface; 2αs and 2αr are the 

angular divergence of the source and the field–of–view 
angle of the receiver; σ is the scattering coefficient of the 
atmosphere; <γ2> is the variance of the angle of deflection 
due to the elementary scattering event.  

For β = 0 and n = 0 formula (3) transforms into the 
expression for the power received from the Lambertian 
surface.3 For α = 0 as Δ → 0 formula (3) transforms into 
the expression for the power received from the specular 
surface. 

Calculating the integrals appearing in Eq. (3), we derive 
(assuming that the sounding pulse shape is Gaussian, i.e.,  
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where P0 is the emitted power, rr is the effective radius of the 

receiving aperture, ε is the extinction coefficient of the 
atmosphere, and τp is the sounding pulse width. 

For β = 0, n = 0, and σ = 0 formula (4) transforms into 
the expression for P(t) received from the flat Lambertian 
surface through the transparent aerosol atmosphere.3  

Figures 1 and 2 show the results of calculations of 
the echo–signal shape received from the surface with 
complicated scattering phase function for different values 
of the parameter β/α (for different relative contribution 
of diffusive and quasispecular components). The quantity  

P(t′)

P(t′ = 0)
 was calculated using formula (4) for the following 

values of the parameters: β/α = 0.1 (curve 1), β/α = 0.9 

(curve 2), n = 1, θs = 70°, θr = –65°, Ls = 104 m, Lr = 103 m, 

αs = 10–2, αr = 10–1, τp = 10–9 s, Δ = 10–2, θ0 = –θs, 

σ<γ2> = 0 (Fig. 1), σ<γ2> = 10–4 m–2 (Fig. 2).  
 

 
 

FIG. 1. The echo–signal shape in the transparent 
atmosphere. 
 

 
 

FIG. 2. The echo–signal shape in the optically dense 
atmosphere. 

 

It can be seen from the figures that the shape of the 
received echo�signal depends strongly on the relative 
contribution of the quasispecular and diffusive components 
of the scattering phase function. For optically denser 
atmosphere this dependence is weak. Physically this is 
explained by the increase in the effective angular width of 
the quasispecular component of the scattering phase 
function of the surface in the atmosphere. 

The relations derived in this work can be used with 
the purposes of developing laser remote sounding systems 
and analyzing their operation.  
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