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A new numerical scheme has been proposed for reconstructing the microstructure 
and the refractive index of aerosol from the angular measurements of scattering matrix 
components. The inversion method is based on representation of the polydisperse 
characteristics of scattering in the form of the Stieltjes integrals and minimization of 
the discrepancy functional on a set of monotone bounded functions. Such an approach 
impose no restrictions on the smoothness of aerosol microstructural distributions. 
Moreover, it is not necessary to solve the problem on choosing a regularization 
parameter. The results of numerical modeling of the inverse problem are given as well 
as an example of the interpretation from the data of field experiments. 

 
1. Introduction. In the course of solving the inverse 

problems for aerosol light scattering, the Reimann integral 
representation is usually employed to describe polydisperse 
optical characteristics. The aerosol particle size distribution in 
this case is characterized by the function n(r) so that the value 
n(r)dr determines the number of particles whose radii lie in 
the interval [r, r + dr]. Since real aerosol distributions are 
discrete, such a representation is, to a certain extent, 
mathematical idealization and can be acceptable if the 
particles are distributed sufficiently dense on each small 
interval [r, r + dr]. It is clear that these arguments are of 
qualitative nature and pertain not only to the size distribution 
of the particle number density n(r) but also to the associated 
distribution functions of particles over size of the geometric 
cross section s(r) and over the volume v(r) which are also 
employed for the description of the aerosol microstructure. The 
limitation on the application of this description of 
microstructure with such differential distributions is 
manifested in the solution of inverse problems, during the 
regularization of which a class of admissible solutions gets 
narrower due to the requirements of continuity, smoothness, etc. 

From this point of view, many restrictions can be 
overcome if we make use of an alternative representation of 
polydisperse characteristics of scattering in the form of the 
Reimann–Stieltjes integrals. Such a representation of spectral 
optical characteristics was discussed elsewhere.1 The present 
paper deals with one of the possible calculational schemes for 
simultaneous reconstruction of the microstructure and the 
refractive index of aerosol by inverting the angular 
polarization characteristics of scattering represented in the 
form of the Stieltjes integrals. 

2. Formulation of the problem and scheme for 
inversion. For definiteness, below we are concerned with the 
distribution functions of particles over size of geometric cross 
section. Let us denote by S(r) the function prescribed on the 
interval [0, R]. This function determines the total geometric 
cross section of particles with radius smaller than or equal to 
r. We examine now some properties of the function S(r) 
determining the class of functions Ω to which it belongs. This 
function is positive, monotonically nondecreasing, uniformly 
bounded on the interval [0, R] and continuous from the left. 
It is well known that any monotone function can be 
represented as a sum of a continuous monotone function and a 
jump function. Therefore, we can write the expansion 

 

S(r) = S
~
(r) + ∑

rk<r

 σk , (1) 

 

where S
~
(r) is the continuous monotone function with the 

derivative dS
~
/dr = s(r), and the second term prescribes a 

jump function at discontinuity points rk. In the problem 

under study the jump function determines the existence of a 
monodisperse fraction of particles with radii rk and total 

cross section σk. 

Using the distribution function S(r) for describing the 
disperse composition of aerosol particles, it is possible to 
represent any optical characteristics, e.g., the scattering 
phase function μ(θ) in the form of the Stieltjes integral 

 

μ(θ) = ⌡⌠
0

R

 K(θ, r)dS(r) , (2) 

 

in which the kernel K(θ, r) = (i
1
 + i

2
)/(2πx2) and 

x = 2πr/λ, where i
1
 and i

2
 are the functions of the 

dimensionless intensity2 and λ is the wavelength. By virtue 
of expansion (1), integral (2) can be written in the form 

 

⌡⌠
0

R

 K(θ, r)dS(r) = ∑
k

 K(θ, rk)σk + ⌡⌠
0

R

 K(θ, r)s(r)dr . (3) 

 
To determine the function S(r) from Eq. (2), it is 

convenient to integrate it preliminary by parts: 
 

⌡⌠
0

R

 K(θ, r)dS(r) = K(θ, r)S(r)
0

R
 – ⌡⌠

0

R

 S(r)dK(θ, r) . (4) 

which leads to the equation for the function S(r)  
 

K(θ, r)S(r) – ⌡⌠
0

R

 
∂K(θ, r)

∂r S(r)dr = μ(θ) , (5) 

or to the equation  
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⌡⌠
0

R

 
∂K(θ, r)

∂r S
↓
(r)dr = μ(θ) (6) 

 

for the function S
↓
(r) = S(R) – S(r). Equations (5) and (6) 

have a general form of the equation of the first type 
 

QS = μ . (7) 
 

It follows from the properties of the function S(r) that 
its variations are bounded. Then, following the Helly 
theorem,3 there exists a sequence of functions in Ω which 
converges at every point to a certain function from Ω. The 
convergence at every point and uniform boundedness imply 
the convergence in Lp[0, R], where p > 1, i.e., the set Ω is a 

compact in Lp[0, R]. Now the developed theory has been 

created and the effective numerical algorithms have been 
constructed for solving the ill–posed inverse problems on 
compact sets.4 Since the rigorous solution S

0
(r) belongs to 

the compact set Ω, it is sufficient to minimize the 
discrepancy functional 
 

F2 = ⎜⎜QS – μ ⎜⎜2 (8) 
 

in order to construct a stable approximate solution of 
Eq. (7) on the set Ω (see Ref. 4). Any function S

δ
(r) ∈ Ω 

for which the functional F2 ≤ δ2, where δ2 characterizes an 
error in the input data, can be taken as an approximate 
solution of Eq. (7). In this case the convergence 
S
δ
(r) → S

0
(r) takes place in space Lp[0, R] for p > 1. Note 

some other important properties of the approximate solution 
S
δ
(r) found in Ref. 4. If S

0
(r) is known to be a continuous 

function which corresponds to the absence of the second 
term in Eq. (1), then S

δ
(r) uniformly converges to S

0
(r). 

The approximate solution S
δ
(r) in this case can be a 

discontinuous monotone function. Finally, if S
0
(r) is a 

piecewise–continuous function, then S
δ
(r) → S

0
(r) 

uniformly on each closed segment which does not include 
the discontinuity points of the rigorous solution S

0
(r). 

The following differences can be noted in the 
aforementioned approach to the problem of determining the 
aerosol microstructure from the optical characteristics of 
scattering and the methods employing regularizing 
algorithms which implement minimization of the smoothing 
functional.5 Transition to the integral representation of the 
microstructure of aerosol distributions enables one to extend 
substantially the class of correctness when solving the 
inverse problems. The smoothing functional method is 
mainly tailored to the problems of reconstructing continuous 
smooth aerosol distributions s(r). If the distributions s(r) 
are discontinuous and have no required smoothness, the 
transition to the representation of the dispersion 
composition with the integral distributions S(r) is 
expidient. In this case to describe discontinuities in 
distributions s(r) it is sufficient to employ a piecewise–
linear approximation for the function S(r). Moreover, if we 
assume the existence of discontinuities in the function S(r), 
then it becomes possible to treat situations describing the 
presence of monodisperse aerosol fractions which correspond 
to the δ–singularities in the distributions s(r). 

The other important advantages of solution of inverse 
problem (7) on the compact Ω, is the possibility of estimating 
the error of the approximate solution based on the information 
about the value of the error in the initial data.4  

Characterization of the ensembles of aerosol particles 
with the integral distributions S(r) is less applicable than 
the other methods for describing the dispersion composition 
of aerosol. Accordingly, using representation (4) it is 
possible to transfer to more usual and obvious 
microstructural parameters such as a particle number 
density, a volume fill factor, and moments of different 
order, including a mean value, a half–width, etc. For 
example, the volume fill factor V and the particle radius rs 

averaged over the distribution s(r) are expressed in terms of 
the function S(r) based on the formulas 

 

V = a 

⎣
⎢
⎡

⎦
⎥
⎤

RS(R) – ⌡⌠
0

R

 S(r)dr  , 

 

rs = V/[aS(R)] ,  a = 4/3 . 
 

3. Reconstruction of the refractive index. The 
method for estimating the refractive index m – iκ is 
analogous to that described elsewhere6 for differential 
distributions s(r), but, in contrast to the latter, it does not 
require the determination of the regularization parameter for 
the inverse problem with an approximately assigned 
operator. Now we will briefly dwell on estimating the 
refractive index from the measurements of two optical 
characteristics, e.g., the polarization scattering phase 
functions μi = QiS (i = 1, 2). For simplicity, we will 

discuss the reconstruction of only one parameter, i.e., a real 
part of the refractive index m. 

Let m
0
 be an exact value of the real part of the 

refractive index which belongs to a certain a priori assigned 
region P. Then for arbitrary m ∈ P the solution S 
reconstructed by minimizing functional (8) for one of the 
polarization scattering phase functions, e.g., μ

1
, is also 

dependent on the chosen value of the parameters m. The 
method for estimating the parameter m is based on 
minimizing in the region P the discrepancy in the measured 
second characteristic μ

2
 and the scattering phase function μ

2
 

calculated from the microstructure S
1
 = S(r, m) which has 

been reconstructed by inverting μ
1
 

 

F
12

2 (m) = ⎜⎜Q
2
(m)S

1
 – μ

2
⎜⎜2 . (9) 

 

The efficiency of estimating the refractive index from 
the condition of minimum of the discrepancy functional 
Fij(m, κ) in the form of formula (9) depends on the degree 

of variability of the functional in the vicinity of the 
rigorous solution which can be estimated numerically for 
different opto–microphysical state of the atmosphere and is 
determined by the values of optical characteristics μi and 

scattering angles for which the measurements have been 
carried out. 

4. Finite–difference approximation. When direct and 
inverse problems are solved for polydisperse characteristics 
of scattering in the form of formula (5) (or formula (6)) the 
complexity can appear associated with the derivatives of the 
form ∂K(⋅)/∂r of the corresponding Mie efficiency factors 
entering into the integrand. Therefore it has become 
necessary to construct algorithms for calculating the 
derivatives ∂K/∂r with strong alternating oscillations and 
large amplitude differences. Evalulation of integrals of the 
functions with such properties is a nontrivial problem and 
requires the application of the special–purpose quadrature 
schemes. In the simplest case the quantization of the  
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problem can be performed based on the scheme presented 
below.  

To this end, for a given n we define the grid nodes 
rj = R⋅j/n with a uniform step Δ = R/n in which the 

distribution S(r) is approximated by a piecewise–linear 
function (spline) according to the formula 

 

S(r) = ∑
j=1

n

 SjNj(r) , (10) 

 

where Sj = S(rj) (S(0) = 0). The base functions Nj(r) have 

the form  
 

Nj(r) = N
0⎝
⎛

⎠
⎞r – rj

Δ  ,  j = 1, 2, ..., n , (11) 

 

where  
 

N
0
(r) = {1 – ⏐r⏐ , r ≤ 1

0 , r > 1 .    

 

In such an approximation a set of functions S(r) transforms 
to a set of vectors S with nondecreasing components: 
 

0 < S
1
 ≤ S

2
 ≤ ...≤ Sn ≤ C , (12) 

 

where C is the upper estimate of the total cross section of 
particles. Substituting Eq. (10) into Eq. (5), after 
transformations, we obtain a finite–difference analog for 
Eq. (5) 
 

∑
j=1

n

 Qj(θ)Sj = μj(θ) , (13) 

where  

Qj(θ) = K
–

j-1 – K
–

j ,  j = 1, ..., n ; (14) 
 

K
–

j(θ) = Δ–1 ⌡⌠
rj

rj+1

 K(θ, r)dr , j = 0, 1, ..., n – 1 ; (15) 

 

K
–

n(θ) = 0. 
 

Functions K
–

j(θ) (j ≠ n) are the values of the kernel K(θ, r) 

averaged over the intervals [rj, rj+1
]. It can be seen from 

relations (13)–(15) that in the above–considered finite–
difference scheme it is not necessary to calculate integrals 
involving the derivatives ∂K/∂r. 

5. The results of numerical simulation. Let us 
consider some examples illustrating the efficiency of the 
foregoing method in the numerical experiment as applied to 
the estimate of the parameters m and κ from angular 
polarization measurements. The haze N from Ref. 2 with the 
refractive index 1.5 – i ⋅ 0, was chosen as a model 
microstructural distribution. The microstructural 
distributions S(r) were reconstructed by inverting the 
components of the scattering matrix μ

1
(θ) prescribed on a 

discrete set of angles θi, where i = 1,..., p and p = 18 

uniformly distributed on the interval [0, 180°]. The 
discrepancy functional (8) for Eq. (7) was minimized with a 
set of vectors S subject to constraints (12) by the 
conditional gradient method.4 The parameters (m, κ) were 
estimated by minimizing the discrepancy functional  

F
1k(m, κ) in the form of formula (9) for the rest of the 

components of the scattering matrix μk(θ), where 

k = 2, 3, 4, at the same scattering angles. 
 

 
 

FIG. 1. A plot of the discrepancy functional  

F
~

12
 = ⎜⎜Q

2
S

1
 – μ

2
⎜⎜/⎜⎜μ

2
⎜⎜ vs the refractive index m – iκ 

obtained in the numerical experiment for the model haze H 
(m

0
 = 1.5 and κ

0
 = 0). 

 

The results of numerical experiments are shown in 

Figs. 1–3. Shown in Fig. 1 is the surface of the functional 

F
~

12
(m, κ) = F

12
(m, κ)/⎜⎜μ

2
⎜⎜ in space of the parameters 

(m, κ) in the vicinity of the rigorous solution (m
0
 = 1.5 and 

κ
0
 = 0). As can be seen from Fig. 1, in the considered 

region of variations in the parameters (m, κ) the surface 
F

12
(m, κ) has a quite complicated multi–extremum 

structure with global minimum at the point (m
0
, κ

0
). If a 

real part of the refractive index m varies within the limits 
[1.4, 1.6], then the range of relative variability of the 
functional F

12
(m, κ) about the norm ⎜⎜μ

2
⎜⎜ lies within 28% 

for the exact value of the imaginary part κ = κ
0
 and exceeds 

50% for the deviation of κ as great as 0.1. 
Since in the vicinity of the point of minimum (m

0
, κ

0
) 

the behavior of the functional F
12

(m, κ) is primarily 

determined by a noise component of the measured 
polarization characteristics, a set P

δ
 of points (m, κ) 

satisfying the inequality F
12

(m, κ) ≤ δ, where δ depends on 

the error in assigning the functions μ
1
 and μ

2
, can be 

considered as admissible solutions. The behavior of the 
functional F

12
(m, κ) in the vicinity of the point (m

0
, κ

0
) 

testifies to the fact that the errors in estimating one of the 
parameters, e.g., κ, results in errors in determining another 
parameter m when F

12
(m, κ) is minimized. In the case at 

hand such a mutual effect of errors becomes important for  
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Δκ > 0.02 and gives an error Δm in estimating the parameters 
m by minimizing F

12
(m) given that Δm was 0.05 for an 

a priori error Δκ = 0.05. The relation between the errors Δm 
and Δκ determines a region of uncertainty in estimating the 
parameters m and κ by minimizing the functional F

12
(m, κ). 

 

 
 

 a b 
 

FIG. 2. Charts of contour lines of the discrepancy 

functionals F
~

12
 (a) and F

~
14

 (b) in the plane of the 

parameters (m, κ); the step of the contour lines is 0.05. 
 

The regions of uncertainty when estimating the 
parameters m and κ can be found from Fig. 2a in which a 

chart of contour lines of the functional surface F
~

12
(m, κ) is 

shown. The contour lines in Fig. 2a define the boundaries of 
the region P

δ
 for different values δ. It is clear that the steeper 

the slopes of the surface F
12

(m, κ), the higher is the density of 

contour lines and the higher is the sensitivity of the functional 
F

12
(m, κ) to variations in the parameters being reconstructed. 

For comparison, Fig. 2b shows a chart of contour lines of 

the functional F
~

14
(m, κ) = F

14
(m, κ)/⎜⎜μ

4
⎜⎜. In the vicinity of 

the point (m
0
, κ

0
) under consideration the variations of the 

functional F
14

(m, κ) are stronger than those of the functional 

F
~

12
(m, κ) and exceed 120%. Comparison of Figs. 2a and 2b 

reveals that with an equal step of contour lines (0.05) the line 

density is higher than that for the functional F
~

14
(m, κ). In 

this case, the region P
δ
 of admissible values of the parameters 

(m, κ) corresponding to a fixed level of discrepancy δ, e.g., 

δ = 10%, is much smaller for the functional F
~

14
(m, κ) than an 

analogous region bounded by the contour line of the same 

level of discrepancy for the functional F
~

12
(m, κ). This is  

indicative of higher level of information content of a pair of 
polarization characteristics {μ

1
, μ

4
} in comparison with the pair 

{μ
1
, μ

2
} for the problem of reconstructing the refractive index 

m – i⋅κ.  
The analogous calculations were also made for a pair 

of characteristics {μ
1
, μ

3
} which showed that a 

combination of such measurements is less sensitive to 
variations in the parameters being reconstructed compared 
to the aforementioned pairs of characteristics {μ

1
, μ

2
} and 

{μ
1
, μ

4
}. To compare the information content of the three 

functionals F
1j(m, κ) (j = 2, 3, 4) relative to the 

parameters being reconstructed, Fig. 3 shows their 
dependences on each of the parameters m and κ with an 
exact value of another parameter. The behavior of the 
functionals F

1j(m, κ) (j = 2, 3, 4) shown in Fig. 3 is 

analogous to the dependences of discrepancy functionals 
derived in Ref. 6 based on the other calculational scheme. 

 

 
 

 a b 
 

FIG. 3. A plot of the discrepancy functionals F
~

1j(m, κ) 

(j = 2, 3, 4, curves 1–3) vs a real m (a) and imaginary κ 
(b) parts of the refractive index. 
 

6. An example of interpreting the results of field 
experiments. In conclusion, let us consider an example of 
interpreting the polarization scattering phase functions of a 
coastal marine haze using the foregoing method. The 
polarization scattering phase functions were assigned in the 
form of a single–parameter model7 which described their 
transformation under conditions of variable turbidity of the 
atmosphere by means of an input parameter, i.e., the 
meteorological visibility range Sm. The results of 

reconstructing a real part of the refractive index m by 
inverting the model of polarization scattering phase functions 
depending on the aerosol extinction coefficient at the 
wavelength λ = 0.55 μm are shown in Fig. 4a (curve 1). The 
vertical lines denote a margin of the refractive index m 

corresponding to a margin of 10% of the functional F
~

12
(m).  
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The data derived in Ref. 8 from the model of polarization 
scattering phase functions by the regularization method are 
shown here too for comparison (curve 2). The discrepancy in 
the estimates of m obtained by the two methods did not 
exceed 0.01.  

 

 
a 

 
b 
 

FIG. 4. An example of interpeting the model of polarization 
scattering phase functions for a castal marine haze.7 a) 
Results of reconstructing a real part of the refractive index 
m as a function of the aerosol scattering coefficient α (0.55): 
curve 1 is obtained by the method described in the paper 
and curve 2 is obtained by the regularization method8 and 
b) a family of aerosol distributions S

£
(r) reconstructed for 

the meteorological visibility range Sm = 5 (curve 1), 10 (2), 

20 (3), 30 (4), and 50 (5) km. 
 

A family of aerosol distributions S
↓
(r) corresponds to the 

reconstructed values of the refractive index m shown in 
Fig. 4b by the discrete counts S

↓j – S
↓
(rj) with the step 

Δ = 0.05 μm. When the discrepancy function F(8) was 
minimized, the a priori upper limit C subject to 
constraints (12) was fixed and equal to 0.4 km–1 for all of the 
chosen values Sm. A set of the values S

£
(r) at zero point 

characterizes the variability of the total geometric cross section 
of haze particles attendant to changes in the meteorological  

visibility range Sm. Depicted in Fig. 4b are the data which 

enable us to determine, in a rather simple way, the 
transformation of the volume fill factor V as a function of the 
atmospheric turbidity (see Table I, the second row). The third 
row of Table I presents the results of calculation of V from 
the differential distributions S(r) taken from Ref. 8. The 
discrepancy in the values of the volume fill factor V derived 
by two different methods are within 10%. 
 
TABLE I. Results of reconstruction of the volume fill factors 
V for the coastal marine haze from the model of polarization 
scattering phase functions published in Ref.

 
7. 

 

Sm, km–1
 5 10 20 30 50 

V⋅1010
 1.55 0.773 0.372 0.258 0.160

V from Ref. 8 1.31 0.705 0.386 0.257 0.158
 

Conclusion. Thus, a new numerical scheme for 
reconstructing the microstructure and the refractive index of 
aerosol particles from angular measurements of scattering 
matrix components has been proposed in this paper. The 
inversion method is based on the use of the integral aerosol 
particle size distributions and on the representation of the 
polydisperse scattering characteristics in the form of the 
Stieltjes integrals. Advantages of this approach include the 
fact that for such a statement a set of correctness 
incorporates a wider class of functions describing the aerosol 
particle size distributions. Moreover, when solving this 
problem it is unnecessary to choose the regularization 
parameter for the inverse problem with the approximately 
assigned operator. The given results of numerical modeling 
of the inverse problem for the components of the scattering 
matrix and the analysis of the information content of 
polarization measurements as well as the examples of 
reconstructing the microphysical parameters of aerosol from 
the field measurements completely agree with the results 
obtained by the other methods. 
 

REFERENCES 
 

1. I.E. Naats, The Method of Inverse Problem in 
Atmospheric Optics (Nauka, Novosibirsk, 1986), 199 pp. 
2. D. Deirmendjian, Electromagnetic Scattering on Spherical 
Polydispersions (American Elsevier, New York, 1969). 
3. A.N. Kolmogorov and S.V. Fomin, Elements of the Theory 
of Functions and Functional Analysis (Nauka, Moscow, 
1968), 496 pp. 
4. A.N. Tikhonov, A.V. Goncharskii, V.V. Stepanov, and 
A.G. Yagola, Numerical Methods for Solving Ill–Posed 
Problems (Nauka, Moscow, 1990), 230 pp. 
5. V.E. Zuev and I.E. Naats, Inverse Problems of Lidar 
Sensing of the Atmosphere (Springer Verlag, New York, 
1982). 
6. V.V. Veretennikov, I.E. Naats, M.V. Panchenko, and 
V.Ya. Fadeev, Izv. Akad. Nauk SSSR, Ser. FAO 14, No. 12, 
1313–1317 (1978). 
7. M.V. Kabanov, M.V. Panchenko, Yu.A. Pkhalagov, et al., 
Optical Properties of Coastal Marine Hazes (Nauka, 
Novosibirsk, 1988), 201 pp. 
8. V.V. Veretennikov, M.V. Kabanov, and M.V. Panchenko, 
Izv. Akad. Nauk SSSR, Ser. FAO 22, No. 10, 1042–1049 
(1988). 

 


