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The phase problem and algorithms of its solution are analyzed theoretically. 
The questions on the ambiguity of the phase problem solution in the one–

dimensional and multi–dimensional cases are discussed. A new method is proposed for 
constructing all solutions in a two–dimensional case. 

 
In many fields of applied optics it often happens so 

that the only accessible and undistorted information about 
the sought–after spatially–limited (finite) distribution is 
the modules of its Fourier spectrum. Such a situation 
occurs, for example, in astronomy when the Labeyrie 
methods and the intensity holograms are used for processing 
of the object images distorted by the turbulent atmosphere. 

Starting from the end of the 1950–th great attention 
was paid to the solution of this problem named as the phase 
problem. Both universal theoretical results concerning the 
form and number of solutions1–10 and particular schemes for 
reconstruction11–19 have been obtained by recent time. 
However, a detailed theoretical analysis of a two–
dimensional case of the phase problem, in particular, for 
discrete distributions has not yet been completed. The 
question on developing a fast and stable algorithm of 
reconstruction has not yet been resolved either. In this 
paper these questions are considered based on already 
known and original results in application to a very practical 
problem on digital processing of optical images. 

 
MATHEMATICAL FORMULATION OF THE PROBLEM 

 
Let J(t) be a continuous positive function (distribution 

over an image) which is nonzero in a finite region of the space 
S. Let us define its Fourier transform as follows: 

 

f(x) = F
∧
{J}

 
=

 
⌡⌠
S

 J(t) exp{ixt} dt = A(x) exp{iϕ(x)} , (1) 

where F
∧
 is the Fourier transform operator; A(x) is the 

known modulus of spectrum; ϕ(x) = arg f(x) is an unknown 
phase of the spectrum. 

In the case of inverse Fourier transform of A2(x) we 
obtain an autocorrelation equation for the image 

 

Q(t) = ⌡⌠
S

 J(t1) J(t1 + t) dt1 , (2) 

where 
 

Q(t) = F
–1

{A2(x)} . 
 

By applying a generalized Fourier transform defined 
for the complex values of the variables w = x + iy to 
Eq. (2) one obtains one more equation of the phase problem 

 
 

fQ(w) = f(w) f(– w) . (3) 
 

For digital processing a distribution of signal over 
image is described by a set of positive readings of the form  

{J(n1, n2): 0 ≤ n1 ≤ N1,  0 ≤ n2 ≤ N2} , and the 

autocorrelation Q can be given in the form 
 

Q(m1, m2) = ∑
n1=0

N1

 
  ∑

n2=0

N2

 
 J(n1, n2) J(n1 + m1, n2 + m2) , (4) 

 

while the expression for f(w) takes the form 
 

f(w1, w2) = ∑
n1=0

N1

 
  ∑

n2=0

N2

 
 J(n1, n2) exp{iw1n1 + iw2n2} . 

 
Change of variables z1 = exp{iw1}, z2 = exp{iw2} 

allows Eq. (3) to be written in the form 
 

RQ(z) = RJ(z) RJ(z
–1

) , (5) 
 

where RJ(z) = ∑
n1=0

N1

 
  ∑
n2=0

N2

 
 J(n1, n2) z 1

n1 z 2

n2 is the z–image 

which is a two–dimensional polynomial.  
Thus, we obtain the following equivalent formulations 

of the phase problem as of the problem on reconstruction of: 
1) the phase ϕ(x) from the modulus A(x) (for a 

discrete case ϕ(z) = arg RJ(z) from ⏐RJ(z)⏐ at ⏐z⏐ = 1), 

2) the image J(t) from Eq. (2) (for the discrete case of 
the image J(n1, n2) from Eq. (4)), and 

3) the unknown integral analytical function f(w) from 
Eq. (3) (for a discrete function of the polynomial RJ(z1, z2) 

from Eq. (5). 
 
UNIQUENESS OF THE RECONSTRUCTION 
 
It is well known that an ordinary shift of an image 

without any change in its structure and shape 
J1(t1, t2) = J(t1 + α1, t2 + α2) results only in a change of 

its Fourier phase by a linear term 
ϕ1(x1, x2) = ϕ(x1, x2) + α1x1 + α2x2 while the Fourier 

spectrum of the mirror image J(t1, t2) = J(– t1, – t2) is a 

complex conjugate to the initial spectrum ϕ1(x1, x2) = 

= – ϕ(x1, x2). Thus, it follows from the problem formulation 

itself, that two Fourier spectra f(x1, x2) and 

f(±x1, ±x2) exp{i(α1x1 + α2x2)} are the equivalent solutions of 

the phase problem, i.e., the image can be reconstructed with 
an accuracy up to the shift and turn by 180°.  
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General analysis of uniqueness of the problem solution 
can be easily carried out by considering Eq. (3). Here the first 
factor f(w) corresponds to the real image, while the second 
factor f(– w) – to the mirror image, therefore, the extraneous 
solutions (nonequivalent) can appear only in the case when 
these factors are "mixed". Let the initial image be a 
convolution of two subimages J(t) = J1(t) * J2(t). In this case 

Eq. (3) takes the form fQ(w) = f1(w)f2(w)f1(– w)f2(– w), 

from which we obtain all solutions f(w) = f1(w)f2(w), 

f(w) = f1(–w)f2(–w), f(w) = f1(w)f2(–w), f(w) = f2(w)f1(–w). 

Thus, formally, in this case the problem has four solutions 
with the quite obvious differences between them, if we 
represent their Fourier spectra in the form of Eq. (1) (for 
y = 0 and w = x on the real axes)  
 

f(x) = A1e
iϕ1A2e

iϕ2 ,  f(– x) = A1e
–iϕ1A2e

–iϕ2 , 
 

f(x) = A1e
iϕ1A2e

–iϕ2 ,  f(– x) = A1e
–iϕ1A2e

iϕ2 . 
 

The spectrum moduli of all solutions are the same and equal 
to A1(x)⋅A2(x). The first two solutions are equivalent true 

solutions, while the rest two solutions are equivalent but 
extraneous solutions, i.e., in fact, there are only two 
solutions: J1(t) * J2(t) and J1(t) * J2(– t). If the initial 

image is a convolution N of subimages 
J(t) = J1(t) *...* JN(t) then Eq. (3) has the form 
 

fQ(w) = f1(w) f2(w) ... fN(w)⋅f1(– w) f2(– w) ⋅⋅⋅ fN(– w) . 
 

New solutions having the same modulus on the real 

axes (w = x) but different phases as ∏
i=1

N

 fi(±w) can be easily 

derived from Eq. (6). The total number of such variants is 
equal to 2N–1. In this case all of them possess one and the 
same autocorrelation. Since linear size of the autocorrelation 
region two times exceeds the size of image region S for 
positive definite images, then all relations satisfying the 
positiveness condition are solutions of the phase problem. 

For a discrete case the analysis is absolutely analogous 
and is based on relation (5), which in this case takes the 
following form 

 

RQ(z) = R1(z) R2(z) ... RN(z)⋅R1(z
–1) R2(z

–1) ... RN(z–1) , 
 

and new solutions of the form ∏
i=1

N

 Ri(z) can be obtained by 

replacing any of terms Ri(z) by Ri(z
–1

). 

Note that in the particular case of a symmetric image 
J(t) = J(– t) the problem can be solved unequivocally since 
f(– w) = f(w) and RJ = RJ(z). Therefore, when deriving new 

solutions we can use only the factors corresponding to 
nonsymmetric subimages for which Ji(– t) ≠ Ji(t),  

fi(– w) ≠ fi(w), and Ri(z
–1) ≠ Ri(z). 

As follows from the above the general question on 
unambiguity of the phase problem is reduced to the question 
on representability of an unknown image in the form of a 
convolution of subimages or on the factorability of a Fourier 
spectrum, with each of the factors being in correspondence 
with a finite positive function. 

1. One – dimensional case. The function f(w), as an 
integral exponential function, can be represented in the 
form of a canonical Adamar–Weierstrass21 product 

 

f(w) = exp(β0 + β1w) ∏
i

∞
 
 ⎝
⎛

⎠
⎞1 – 

w
wi

 exp
⎝
⎛

⎠
⎞w

wi
 , 

 

where wi are the roots of equation f(w) = 0 and β0 and β1 

are the complex constants. A new solution can be obtained 
by changing the root wi in the expansion f(w) for w i*, in so 

doing, the number of new solutions is unlimited, in 
principle, but it should be noted that only those roots can 
give a new solution which are not on the real axis, and 
provided that the images corresponding to them satisfy the 
condition of positiveness. 

In a discrete case the z–image RJ(z) is the one–

dimensional polynomial of Nth power, it has N roots and 
can be represented in the form  

 

RJ(z) = C ∏
i=1

N

 (z – zi) , 

 

where zi are the roots of equation RJ(z) = 0 and C is the 

complex constant. 
A new solution for the case of real roots zi = z i* can be 

obtained by replacing zi for z i 
–1 in any of the factors.3 

When zi ≠ zi* the roots have to be replaced by pairs because 

a new solution consists of the factors (z – zi)⎝
⎛

⎠
⎞z – 

1
zi*

 , 

where zi is an arbitrary root of the pair (zi,zi*). Here we can 

obtain ∼ 2
N1+N2 solutions, where N1 is the number of real 

roots, and N2 is the number of conjugate pairs of roots 

which do not belong to the circle ⏐z⏐ = 1. 
2. Two–dimensional case. In accordance with Ref. 22 

there exists a generalized multi–dimensional analog of the 
canonical product in the form 

 
f(w) = H(w) G(w) . 

 

However, specific views of H(w) and G(w) are 
unknown and, moreover, there are no proofs that finite 
positive functions will correspond to them in the region 
where the image is defined. At this point let us stop the 
consideration of the continuous case for a while. 

In the discrete case the question on the solution 
unambiguity is reduced to the question on the possibility 
of factorizing two–dimensional polynomial 

RJ(z1, z2) = ∑
n1 = 0

N1

 
  ∑

n2 = 0

N2

 
  Jn1n2

 z 1

n1 z 2

n2 into the product of 

polynomials of lower power. In the general case such a 
factorisation is impossible. To estimate the probability of 
obtaining an unambiguous solution of the phase problem 
it is convenient to use the method of the Lebesgue 
measure. The analysis is based on two statements.8 

Statement 1. Let the correspondence of Q
∧

 points of an 
m–dimensional set Bm to the points of an n–dimensional set 

Bn(Q
∧

:Bm → Bn) be continuously differentiable and m<n. 

Then the Lebesgue measure of a subset which is a Q
∧

–image 

Bm(Q
∧

[Bm]) in the set Bn is equal to zero. 
In other words, in an n–dimensional space the 

Lebesgue measure of any subset determined by the  
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m–independent parameters (an optional set) is equal to zero 
at m<n (say, the area of the curve dependent only of a 
single parameter is equal to zero). 

Denote the set of polynomials of the power n with k 
variables as P(n, k). An individual polynomial Pn(z) from 

this set can be represented in the form 
 

Pn(z) = ∑
l1+l2+...+lk ≤ n

 
   C(l1... lk) z 1

l1 z 2

l2... z k

lk . 

 

The number of coefficients determining the polynomial 
from P(n, k) will be denoted as α(n, k), and the space of 

coefficients of the polynomials as Rα(n, k). Since each 
coefficient of the polynomial Pn(z) can be represented as a 

coordinate of a vector from Rα(n, k) then there exists one-to-

one correspondence between P(n, k) and Rα(n, k). 

Statement 2. The subset B of factorable polynomials 
of the set P(n, k) corresponds to the set with a zero measure 

in Rα(n, k) under conditions that k>1 and n>1. 
Based on these statements one can easily come to 

several important conclusions. For example, in the one–
dimensional case Eq. (5) can be unambiguously solved 
either for symmetrical images or for the images which are a 
convolution of a symmetrical subimage and a 
nonfactorable–more symmetric subimage. Therefore, only 
N + 2

2  from N parameters describing the image of the length 

(N + 1) can be independent. At the same time the set of 
autocorrelations {Qn; – N ≤ n ≤ N} contains N independent 

parameters. Consequently, the Lebesgue measure of a subset 
of autocorrelations which can be unequivocally solved in the 
set of all autocorrelations is equal to zero for N ≥ 3 while 
the phase problem for N ≥ 3 is almost always resolved 
ambiguously. 

In a two–dimensional case the solution is unique 
provided that the z–image expansion involves only one 
asymmetrical factor. As follows from Statement 2 the 
mathematical probability of occurrence of factorable two–
dimensional and multi–dimensional polynomials is equal to 
zero, hence, as a rule, the phase problem can be solved in 
the two–dimensional and multidimensional cases 
unambiguously. The words "as a rule" and "almost always" 
mean here, that the given statements are valid for each 
element of the set excluding for a subset with the zero 
Lebesgue measure. 

The above–mentioned discussions make it possible to 
understand the difference between the one–dimensional and 
multi–dimensional cases and explain the success of 
numerical calculations carried out for two–dimensional case 
of the problem. However, there appears a question on the 
method of obtaining all possible solutions in the two–
dimensional case in which an initial image is in fact a 
convolution of two– and one–dimensional subimages. If in 
the one–dimensional case this question can be answered by 
finding all zeros of Eq. (5) and constructing all solutions by 
the above–described transfer of the roots, in the two–
dimensional case it is impossible to factorize the polynomial 
directly. Therefore, the authors propose a general method of 
reducing a two–dimensional discrete case to a one–
dimensional case. Its basic idea is in a row–by–row 
elongation of the discrete image Jn1

, n2
, i.e., a one–

dimensional image is put in correspondence to it, according 
to the rule  

 

In = Jn1
, n2

 at n = n1 + n2(N1 + 1) . 

 

Let us establish the correspondence between the values 
of autocorrelation Ql of the image In and autocorrelation 

Ql1,
 l2

 of the image Jn1
, n2

. Since z–images of both 

autocorrelations satisfy Eq. (5) and equality 

RI(z) = RJ(z, z
N1+1

) is true for z–images (with an account 

of Eq. (7)), we can write down 
 

RQ(z) = RQ(z, z
N1+1

) . 
 

In accordance with Eq. (5) and with an account of the 

view of the polynomial, RQ(z, z
N1+1

) can be represented as  
 

RQ(z, z
N1+1

) = 

⎩
⎨
⎧

⎭
⎬
⎫

∑
n1=0

N1

 
 ∑
n2=0

N2

 
 Jn1, n2 

z
n1 + n2(N1+1)

 × 

 

× 

⎩
⎨
⎧

⎭
⎬
⎫

∑
m1=0

M1

 
 ∑
m2=0

M2

 
 Jm1, m2 

z
–m1 – m2(N1+1)

 . 

 
Writing down an analogous expression for RQ(z) with 

an account of Eq. (8) we can find 
 

Ql = ∑
n1=0

N1

 
 ∑
n2=0

N2

 
 ∑
m1=0

M1

 
 ∑
m2=0

M2

 
 Jn1, n2 

Jm1, m2
 δ{l – (n1 – m1) – 

 

– (n2 – m2)(N1 + 1)} . 
 

Subsequent analysis is then reduced to finding the 
conditions under which an argument of the δ–function 
becomes zero, that can be given in the form of a system of 
equations 

 

⎩
⎨
⎧

 

n1 – m1 = l1 – p(N1 + 1) ,

n2 – m2 = l2 + p ,      (9) 

 

where l2 = 
⎣
⎡

⎦
⎤l

N1 + 1  , l1 = l – 
⎣
⎡

⎦
⎤l

N1 + 1  (N1 + 1), and p is 

the discrete parameter determining the range of series 
expansion over the modulus of (N1 + 1). From Eq. (9) we 

can derive a system of inequalities determining the range of 
values p: 0 ≤ l1 ≤ N1, ⏐l1– p(N1 + 1)⏐ ≤ N1. The graphic 

representation of the inequalities shows that p can take only 
two values: 0 and or 1. 

Therefore, the value of the one–dimensional 
autocorrelation Ql of the image In elongated in row is the 

sum of two autocorrelations Ql1, l2
 (see Ref. 20): 

 

Ql = Ql1, l2
 + Ql1–N1–1, l2+1 , (10) 

 

where 
 

l1 = l – 
⎣
⎡

⎦
⎤l

N1 + 1 ( N1 + 1) , l2 = 
⎣
⎡

⎦
⎤l

N1 + 1  . 

 

A column–by–column elongation, in accordance with 
the rule In = Jn1, n2

 and n = n2 + n1(N2 + 1) results in  

 

Ql = Ql1, l2
 + Ql1+1, l2–N2–1 , (11) 
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where 
 

l1 = 
⎣
⎡

⎦
⎤l

N2 + 1  , l2 = l – 
⎣
⎡

⎦
⎤l

N2 + 1  (N2 + 1) . 

 

Let us consider a row–by–row method of elongation 
with zeros which is reduced to adding a row consisting of 
N1 zeros to the last element of each row of a two–

dimensional image.10 As a result, only one component 
remains in Eqs. (10) and (11). The rule of elongation is 
given in the form 

 

In = Jn1,n2
 ,  n = n1 + n2(2N1 + 1) , (12) 

 

and Eq. (8) takes the form 
 

RQ(z) = RQ(z, z
2N1+1

) . (13) 
 

As in the preceeding case we obtain a system of 
equations 

 

⎩
⎨
⎧

 

n1 – m1 = l1 – p(2N1 + 1) ,

n2 – m2 = l2 + p ,       

 

where l2 = 
⎣
⎡

⎦
⎤l

2N1 + 1  ,  l1 = l – 
⎣
⎡

⎦
⎤l

2N1 + 1  (2N1 + 1) . 

The system of inequalities from which we find the 
range of values of the parameter p is 0 ≤ l1 ≤ 2N1 and 

⏐l1 – p(2N1 + 1)⏐ ≤ N1 . 

The graphical representation of these inequalities 
shows that p can take only one value: either 0 or 1. 
Therefore Eq. (10) takes the form 

 

Ql = Ql1,l2
 . (14) 

 

In this case Ql1–2N1–2, l2+1 = 0, or 

 

Ql = Ql1–2N1–2, l2+1 (15) 

where 
 

Ql1, l2
 = 0 , l1 = l – 

⎣
⎡

⎦
⎤l

2N1 + 1  (2N1 + 1) , l2 = 
⎣
⎡

⎦
⎤l

2N1 + 1  . 

 

It is obvious that Eqs. (14) and (15) are valid in the 
case of column–by–column elongation with zeros as well. 

In the general case the row–by–row elongation of 
Jn1, n2

 into a one–dimensional image can be given in the 

form In = Jn1, n2
 and n = n1 + n2M1, that results in: 

a) M1 = N1 + 1 elongation without zeros (10),  

b) N1 + 1 < M1 < 2N1 + 1 is an intermediate case in 

which the elongation is done with zeros but the number of 
zeros is insufficient to ensure an equality to zero of one of 
the terms of Eq. (10) and Q will also be a sum of two two–
dimensional autocorrelations, one of them being shifted, 

c) M1 = 2N1 + 1, we obtain either Eq. (14) or Eq. (15), 

d) M1 > 2N1 + 1, the method is applicable but it is 

rather difficult to establish the correspondence of the form 
(14) or (15), since it cannot be written analytically, and 

e) 1 < M1 <N1 + 1, in this case Ql is a combination of 

three and more two–dimensional autocorrelations but similar 
elongation is now senseless, because the rows are superposed and 

it becomes impossible to reconstruct the image Jn1, n2
 from In. 

The method developed here makes it possible to 
formulate an algorithm for finding all solutions of the phase 
problem in a two–dimensional discrete case. 

1. From the given autocorrelation Ql1, l2
 within the 

region SQ(– L1 ≤ l1 ≤ L, – L2 ≤ l2 ≤ L2) the region S in 

which the image is defined as N1 = [L1] + 1 and 

N2 = [L2] + 1 . 

2. In accordance with N1 and N2 we formulate the rule 

of an elongation of an unknown two–dimensional image Jn1, n2
 

into a one–dimensional In image either row–by–row 

n = n1 + n2M1(N1 + 1 ≤ M1 ≤ 2N1 + 1) or column–by–

column n = n2 + n1M2 (N2 + 1 ≤ M2 ≤ 2N2 + 1) . 

3. Depending on the chosen rule of elongation the 
one–dimensional autocorrelation Ql of a one–dimensional 

analog of the image In is constructed. 

4. The roots RQ(z) and all solutions of a one–

dimensional discrete case of the problem are found.3 
5. Thusly obtained one–dimensional solutions are then 

selected out according to the criterion: 
a) contractibility into a two–dimensional image; if the 

elongation occurred with zeros, then they have to possess 
zero values at the corresponding regions, and 

b) if the elongation was without zeros, then their 
one–dimensional autocorelation Ql is equal to the sum of 

two two–dimensional autocorrelations, therefore, it is 
necessary to calculate one–dimensional autocorrelations of 

the obtained solutions Q l

m
, to calculate convolutions into 

the two–dimensional ones → Ol1, l2

m  , and to check an 

equality Ql1,
 l2

 = Ol1, l2

m  . In this case the extraneous 

solutions do not satisfy this equality. 
It is possible to prove theoretically, that the Lebesgue 

measure of the constructed extraneous solutions under the 
above–mentioned restrictions is equal to zero. 

Further discussions of this problem will be continued 
in Parts 2 and 3 of this paper. 
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