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Efficiency of phase-conjugated correction of random wavefront tilts is studied to 

shape laser beams propagating through the turbulent atmosphere. Amplification of the 
average intensity of radiation and degree of suppression of the intensity fluctuations 
on the beam axis in the receiving plane chosen as perfomance figures of the correction 
efficiency are analyzed. Assuming that the correction for random tilts is practically 
identical to control of the random shifts of the beam's energy center of gravity we 
have avaluated the relative contribution of the latter to the diminishment of the 
average intensity of collimated beams with the Fresnel number of the order of unity. 

 
Laser beam propagation through the turbulent 

atmosphere is always accompanied by beam broadening as 
well as by radiation intensity fluctuations at a point of 
reception.1 Such phenomena have a negative effect on the 
operation of atmospheric laser systems, in particular, lines 
of optical communication, thereby deteriorating, e.g., 
noiseproof characteristics and reliability of information 
transmission. To compensate for the effect of the 
atmospheric turbulence, the adaptive optical systems2,3 
can be used. 

The present paper concerns with investigation of the 
efficiency of a phase–conjugated system intended for 
correcting the direction of laser beam propagation. It is 
assumed here that the correction is based on the 
measurements of random wavefront tilts of the wave field 
being analyzed within the transmitting aperture and 
formed by a point reference source. Such a correction is 
the simplest from the viewpoint of technical realization. 
Moreover, it is the large–scale phase fluctuations (within 
the aperture associated with random wavefront tilts) for 
which the principle of additivity can be expected to be 
hold2 even under conditions of radiation propagating 
along the extended paths. The wavefront tilts are less 
sensitive than small–scale phase fluctuations to the effect 
of the other factors degrading the correction efficiency.2 

The fact that the correction under study is 
practically identical to the control of the random shifts of 
the laser beam's energy center of gravity in the receiving 
plane evokes additional interest.3 In close connection 
with this is the problem of the effect of the beam shifts 
on relative variance of intensity fluctuations β2, i.e., the 
difference between β2 calculated (or experimentally 
measured) in a stationary coordinate system and the one 
obtained in the coordinate system affixed to the laser 
beam's center of gravity4,5 as well as the problem of the 
β2 dependence on a type of radiation diffraction at the 
transmitting aperture.6,7 

To obtain the numerical results, we make use of the 
phase approximation of the Huygens–Kirchhoff method1 
generalized to randomly inhomogeneous media according 
to which the corrected field u

c
 at a point R of the 

receiving plane x = x
0
 + L is written down in the form  

 
 

u
c
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k
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where u

0
(ρ

0
) is the initial distribution of the laser beam 

field in the transmitting plane x = x
0
, S(ρ

0
) is the random 

phase of an elementary spherical wave propagating from the 
point ρ

0
 of the plane x

0
 to the point R of the plane x

0
 + L, 

S
c
(ρ

0
) is the wave phase of the point reference source 

employed in correcting and located in the receiving plane, L 
is the path length, and k = 2π/λ is the wave number. 

If the correction of the wavefront tilts alone is 
accomplished  
 
S

c
(ρ

0
) = αρ

0 
, (2) 

 
then a random vector α for the axisymmetric amplitude 
function Ω

0
(ρ

0
) of the transmitting aperture is determined in 

the following way:8,9 
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where Sr(ρ0
) is the wave phase of the reference source. 

The initial distribution of the beam field in the 
transmitting plane is assumed to be Gaussian 
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where F is the curvature radius of the phase front at the 
center of the emitting aperture and 2a = d is the effective 
diameter of the beam. 
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The value θ(ρ
0
) = S(ρ

0
) – S

c
(ρ

0
) entering into relation (1) 

is the corrected phase of the elementary spherical wave. Under 
the assumption of normal distribution of θ the second 
Γ

c2
(L, R) and the fourth Γ

c4
(L, R) statistical moments of the 

field u
c
(L, R) are expressed in terms of the structure function 

 
D

θ
(ρ

01
, ρ

02
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01
) – θ(ρ

02
)]2 > , (5) 

 
where the angular brackets dentote averaging over an 
ensemble of realizations of the propagation medium. Let 
Eq. (5) be represented in the form  
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where the components Ds and D

c
 are determined from the 

expression following the relations  
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The first component is the structure function of the 
phase fluctuations of spherical waves without correction. 
For a locally homogeneous and isotropic turbulent medium 
with the Kolmogorov spectrum of fluctuations in the 
dielectric constant, the function Ds depends only on the 

absolute value of the vector ρ
0
 = ρ

01
 − ρ

02
 and is determined 

from the relations1 
 

Ds(t) = D
0
(d)ϕ(t; l

a
) , ϕ(t; z) = (t2 + z2)5/6 – z5/3 , (9) 

 

where D
0
(z) = 0.27C2

ε
 k2Lz5/3, l

a
 = (2aκe)

–1; C2
; is the 

structure characteristics of fluctuations in the dielectric 
constant; κe = 1.60/l

0
 is the wave number corresponding to 

the inner scale l
0
 of turbulent inhomogeneities, and 

t = ρ
0
/d is the normalized spacing. 

The second component D
c
 was calculated 

elsewhere.3,10,11 Using the results obtained in Ref. 11 after 
some transformations, we have 
 

D
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where T = (ρ
01 + ρ

02
)/d. Relation (10) indicates that the 

phase fluctuations determined by the structure function D
c
 

are inhomogeneous since they depend not only on the 
distance between the points ρ

01
 and ρ

02
 but also on the 

choice of the position of the point (vector T). However, the 
degree of this inhomogeneity is not very high, therefore the 
expression in the square brackets of formula (10) may be 
averaged over the aperture, i.e., taking into account the 
amplitude coefficient W

0
(ρ

0
). Thus we finally arrive at the 

following approximation: 
 

D
c
(t) = 0.76 D

0
(d)t2 , (11) 

 

which differs from the corresponding relation derived in 
Ref. 10 on the assumption that the random wavefront 
tilts α and small–scale phase fluctuations [S(ρ

0i) – αρ
0i] 

are independent only in the numerical coefficient 0.76 in 
place of 0.88. 

Approximation (11) for the structure function D
c
 can 

be used, when writing down the field moments u
c
, to reduce 

the multiplicity of integration and finally to obtain 
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where Ω = a2/ρ2

F is the Fresnel number of the transmitting 

aperture, ρF = L/k, g2 = 1 + Ω2(1 – L/F)2, and 

ϕ
c
(t; z) = ϕ

c
(t; z) – 0.76 t2. 

It should be noted that the relations for the moments 
of the laser beam field without correction can be derived 
from Eqs. (12) and (13) by replacing ϕ

c
 by ϕ. Recall also 

that the calculation of Γ
c2

 yields the average intensity of the 

corrected field <I
c
> and the fourth moment Γ

c4
 determines 

the relative variance of the intensity fluctuations 
 
β

c
2 = Γ

c4
(L, R) / Γ(L, R) – 1 . (14) 

 
Equations (12) and (13) were integrated out 

numerically using the Monte Carlo method.12 The relative 
error estimated from the standard deviations obtained in the 
calculations from the sequence of random values did not 
exceed 2% for Γ

c2
 and 10% for Γ

c4
 (except for one regime of 

propagation described below). 
To compare the results of calculation from formulas 

(12)–(14) with experimental and theoretical studies 
presented, e.g., in Refs. 13–17, we express the structure 
function D

0
(d) in terms of the transverse coherence radius 

r
0
 = (0.37C2

;k
2L)–3/5 of a plane wave 

 
D

0
(d) = 0.74 (d/r

0
)5/3 . (15) 

 
In this case, the ratio d/r

0
 is also related to the relative 

variance of the intensity fluctuations of a plane wave  
β2

0
 = 0.31C2

;k
7/6L1/6 calculated in the first approximation 

of the smooth perturbation method and characterizing the 
turbulence intensity along the propagation path. The 
aforementioned relationship is given by the formula 
 
β

0
2 = 0.26Ω–5/6(d/r

0
)5/3 . (16) 
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Let us consider the characteristics of the corrected 
field on the axis (R = 0) of the focused (L/F = 1) and 
narrow collimated (L/F = 0, and Ω = 1) laser beams. 
Given in the table are the results of calculation of the 
ratio η

0
 = <I

c
>/<I> (in decibels) as functions of the 

parameter (d/r
0
). Presented here too are the 

corresponding values of β
0
 calculated for the beam with 

the Fresnel number Ω = 1 as well. 
The maximum η

0 g 5.3 dB for a focused beam is in a 

good agreement with the result derived in Ref. 11 using 
exact relation (10). The calculated results for a focused 
beam are also plotted in Fig. 1 (solid line) along with the 
experimental data (dots) borrowed from Ref. 14 
(λ = 0.63 μm, L = 1.6 km, and d ∼ 15 cm). It is difficult 

to compare these results with the experimental ones due 
to the difference between the field distributions over the 
really employed transmitting apertures and that of 
unlimited Gaussian beam as well as due to the 
discrepancy in the really controlled wavefront tilts and 
the values of α given by relation (5). However, as shown 
in Refs. 3 and 15, these discrepancies are not so large. 
Therefore the experimental data of Ref. 14 are plotted in 
Fig. 1 at the same scale but are displaced along the 
abscissa at the fixed distance which provides their best 
agreement with the calculated results. Taking into 
account a large spread of points and possible effect of the 
above–indicated factors, it is possible to ascertain quite 
satisfactory agreement between the calculated and 
experimental data. That is also an indirect verification of 
applicability of approximation (11) for the description of 
the structure function D

c
. 

 

 
 

FIG. 1.  
 

 
 

FIG. 2. 
 

 

As follows from examination of the tabulated values, 
for a narrow collimated beam a gain in η

0
 in correcting is 

somewhat smaller than that for a focused beam and the 
maximum in η

0
 is shifted toward increased turbulent 

intensity on the path. The increase of the inner scale of 
turbulence results in the η

0
 increase, particularly for strong 

turbulence as was noted previously in Ref. 16. In all 
instances the marked effect caused by correction of the tilts 
holds even for the very large ratios (d/r

0
). 

As has already been noted above, the correction of the 
beam propagation direction based on the analysis of random 
tilts of the radiation wavefront of a point reference source 
in the transmitting plane is essentially equivalent to 
processing of random displacements of the beam energy 
center of gravity in the receiving plane.3 In this connection 
it is interesting to compare the results of more or less 
rigorous calculations by formulas (12) and (13) with those 
made using a phenomenological model4,5,17 following which 
the beam radius (at e–1) of maximum without correction w 
(in a stationary system of coordinates), is determined by the 
beam radius with correction w

c
 and by the variance of the 

shift of its center of gravity σ 2
sh

: 
 

w2 = w
c
2 + σ

sh
2  . (17) 

 
This formula is based on the assumption of the 

Gaussian (on the average) beam profile as well as on the 
Gaussian shifts of its center of gravity. If relation (17) is 
valid the relative amplification of the average intensity on 
the beam axis, when introducing the correction of the shifts 
η

0
 = w2/w2

c
 , can be estimated as 

 

η
0
 = [1 – σ

sh
2  /w2 ]–1 . (18) 

 

The relation for the variance of the random shifts 
obtained in Markovian approximation has the form1 
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where P
0
 = u

0
2

⌡⌠
d2ρ

0
W 

0
2(ρ

0
) is the total radiation power, 

Φ
ε
(x, κ) is the three–dimensional spectral density of the 

dielectric constant fluctuations in the medium. Following 
Ref. 18, we write down the second moment of the intensity 
in terms of the correlation coefficient KI 
 

< I(x, R
1
)I(x, R

2
) > = < I(x, R

1
) > < I(x, R

2
) > × 

 

× [1 + KI(x, R
1
, R

2
)β(x, R

1
)β(x, R

2
)] . (20) 

 

It is evident that for weak turbulence (β � 1) the second 

term in the square brackets of Eq. (20) can be neglected 
which is the essence of the so–called average–intensity 
approximation.1 Calculations from formula (19) for a 
locally homogeneous turbulent medium with the 
Kolmogorov spectrum Φ

ε
(x, κ) and a beam with the initial 

field distribution in the form of Eq. (4) enable us to go over 
to the following representation 
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σ
sh
2  = 0.34 (1 + α) f

sh
 C

ε

2 L3 a–1/3 , (21) 
 

where  
 

f
sh

 = 3 

⌡⌠
0

1

 dξ(1 – ξ)2q–1/6(ξ) , q(ξ) = (1 – ξL/F)2 + Ω–2ξ2[1 + 

 

+ 0.44D
0 

6/5 (d)ξ6/5] .  
 

Taking into account that the beam radius in the 
stationary coordinate system is estimated as w = aq1/2 (1), the 
effect of introduction of the correction is given by the simple 
relation: 
 

η
0
 = [1 – 0.38 (1 + α) f

sh
 q–1 (1) Ω–2D

0
(d)]–1 . (22) 

 

The coefficient α introduced into relation (21) is the 
correction for the average–intensity approximation (for which 
α = 0). The physical meaning of this coefficient consists of the 
consideration of the effect of the effective beam radius 
fluctuations along the propagation path on the shifts of its 
center of gravity in the receiving plane. Unfortunately, it is 
difficult to estimate the value of α (the corresponding 
asymptotic expressions were given in Ref. 1, however, in the 
region of the parameters of interest for us the residual terms 
have the same order as the principal terms of the expansion 
have). Therefore, as the first approximation, the values of η

0
 

were calculated using Eq. (22) for α = 0. The results for a 
narrow collimated beam are listed in Table I. It is 
noteworthy that for weak turbulence which the conditions 
of applicability of the average–intensity approximation hold 
for, the results of η

0
 calulations from formulas (12) and 

(22) agree. From stronger turbulence the values of η
0
 

determined from Eq. (22) turn out to be underestimated 
(for α = 0), though the general form of the η

0
(d/r

0
) 

dependence remains the same. If we assume that for strong 
turbulence the values of η

0
 obtained by different methods 

must agree, then it is easy to estimate the correspondingly 
required values of α (see Table I for L/F = 0 and Ω = 1). 
Analogous results can be obtained for a focused (L/F = 1) 
beam. The beam defocusing (L/F ≠ 1) leads to the q(1) 
increase and, since f

sh
 is a slowly varying function of L/F, 

to the degradation of the correction efficiency (estimated by 
the value of η

0
) due to the decrease of the relative 

contribution of random shifts to the total beam broadening. 
 

TABLE I. 
 

   η
0
 (L/F = 0, Ω = 1)    

 
d/r

0
 

η
0
  

(L/F = 1, 
l
a
 = 0)  

 
β

0
 

 
l
a
 = 0 

 
l
a
 = 0.2 

from  
Eq. (25) 
for α = 0

 
α 

0.97 
2.23 
3.63 
5.13 
6.70 
8.34 

15.40 
23.06 
35.38 
57.55 

1.02 
2,99 
4,53 
5.27 
5.26 
4.89 
3.48 
2.84 
2.31 
1.85 

0.5 
1.0 
1.5 
2.0 
2.5 
3.0 
5.0 
7.0 
10.0 
15.0 

0.54 
1.73 
2.86 
3.60 
3.93 
3.99 
3.33 
2.77 
2.29 
1.89 

0.54  
1.74 
2.92 
3.72 
4.18 
4.34 
4.07 
3.79 
3.57 
3.46 

0.55 
1.59 
2.22 
2.38 
2.33 
2.21 
1.73 
1.41 
1.12 
0.85 

–0.01 
0.07 
0.21 
0.33 
0.43 
0.51 
0.63 
0.70 
0.81 
0.99 

 

 

Let us proceed now to the estimate of the efficiency 
of correction of the wavefront tilts for suppression of the 
intensity fluctuations. Depicted in Fig. 2a are the results 
of calculation of the ratio η

1
 = β

c
/β for a focused beam 

(the designations are the same as in Fig. 1). From this 
figure it can be seen that with a general monotonous 
behavior of the η

1
(d/r

0
) dependence, in the region of the 

so–called strong random focusing of radiation 
(D

0
(d) ∼ 25), the fluctuation suppression for a focused 

beam deteriorates significantly (the calculated values of 
η

1
 belonging to this region are shown in Fig. 2 with a 

dashed line). However, it should be noted that the 
relative error of calculation of β

c
 for this regimes sharply 

increased (up to ∼ 30% for the selected number of 
statistical tests). This requires careful analysis of the 
corresponding data, though, generally speaking, such a 
result could be expected. Virtually in this region the 
inhomogeneities which cause random focusing of radiation 
(for a focused beam we are most likely dealing with 
random defocusing) make greater contribution and, hence, 
the relative contribution of the beam diviation from the 
initial direction of propagation to β2  becomes smaller. 

For a narrow collimated beam a monotonous 
behavior of η

1
(d/r

0
) in fact is not violated. For strong 

turbulence, the η
1
 values for the collimated (ηcol

1 
) and 

focused (ηf
1
) beams coincide. For weak turbulence ηcol

1 

 > ηf
1
, e.g., ηcol

1 
(2) = 0.58 and ηf

1
(2) = 0.24. The increase 

in l
a
, when β2

0
 � 1, results in the decrease of η

1
 (e.g., 

when l
a
 = 0.2 and β

0
 = 15, we have ηcol

1 
 = 0.73 in place 

of ηcol
1 

 = 0.89 corresponding to the zeroth inner scale). 

In defocusing, taking into account practically 
constant absolute value of σ 2

sh
, the values of η–1

1 
, along 

with η
0
, would decrease, at least, for relatively weak 

turbulence. However, such a conclusion is unreasonable 
since the degree of internal inhomogeneity of the beam 
speckle structure can vary. Analogous variations can also 
be observed when the size of the aperture Ω changes for 
both focused and collimated beams. Therefore, in contrast 
to the mean values for fluctuation characteristics of 
spatially limited laser beams, the simplified 
phenomenological approach assuming a sort of additivity 
of fluctuations caused by different scales of turbulent 
inhomogeneities in the propagation medium cannot be 
considered adequate to the physics of the phenomenon. 
Nevertheless, it is possible to assume that the increase of 
the variance of the intensity fluctuation for collimated 
beams, when Ω ∼ 1, for a relatively strong turbulence6,7 is 
associated with the increased contribution of random 
shifts of the beam's center of gravity to β2. 

By comparing the obtained dependences of the 
performance figures of the correction efficiency η

0
 and η

1
 

on the parameter (d/r
0
) it is not difficult to establish 

that the optimal suppression of fluctuations (η
1
), on the 

one hand, and the optimal amplification of the radiation 
intensity on the beam axis (η

0
), on the other hand, are 

provided for different regimes of turbulence. This is 
particularly true for a focused beam for which a 
substantial supression of fluctuations is observed at a 
much lower level of turbulence compared to the value 
corresponding to the maximum value of η

0
. 

 
 



452   Atmos. Oceanic Opt.  /July  1992/  Vol. 5,  No. 7 G.M. Samel'son 
 

 

REFERENCES 
 

1. V.L. Mironov, Laser Beam Propagation through the 
Turbulent Atmosphere (Nauka, Novosibirsk, 1981), 247 pp. 
2. M.A. Vorontsov and V.I. Shmal'gauzen, Principles of 
Adaptive Optics (Nauka, Moscow, 1985), 336 pp. 
3. V.P. Lukin, Atmospheric Adaptive Optics (Nauka, 
Novosibirsk, 1986), 248 pp. 
4. H.T. Yura, J. Opt. Soc. Am. 63, No. 5, 567–572 (1973). 
5. A.A. Taklaya, Kvant. Elektron. 5, No. 1, 152–155 and 
155–158 (1978). 
6. S.I. Belousov and I.G. Yakushkin, ibid. 7, No. 3, 530–
537 (1980). 
7. G.M. Samel'son, Izv. Vyssh. Uchebn. Zaved. SSSR, 
Radiofizika 31, No. 9, 1136–1138 (1988). 
8. D.L. Fried, J. Opt. Soc. Am. 55, No. 11, 1427–1435 
(1965). 
9. I.Y. Wang, Appl. Opt. 17, No. 16, 2580–2590 (1978). 
 

10. D.L. Fried, J. Opt. Soc. Am. 56, No. 10, 1372–1379 
(1966). 
11. R.F. Lutomirski, W.L. Woodie, and R.G. Buser, Appl. 
Optics 16, No. 3, 665–673 (1977). 
12. G.A. Mikhailov, Some Problems of the Theory of the 
Monte Carlo Methods (Nauka, Novosibirsk, 1974) 143 pp. 
13. J.R. Dunphy and J.R. Kerr, J. Opt. Soc. Am. 64, No. 
7, 1015–1016 (1974). 
14. J.R. Dunphy and J.R. Kerr, Appl. Opt. 16, No. 5, 
1345–1358 (1977). 
15. M.T. Tavis and H.T. Yura, Appl. Opt. 15, No. 11, 
2922–2931 (1976). 
16. G.C. Valley, Appl. Opt. 18, No. 7, 984–987 (1979). 
17. E.P. Milyutin, K.P. Pogosyan, and A.A. Taklaya, 
Kvant. Elektron. 13, No. 10, 2115–2117 (1986). 
18. A.I. Kon, V.L. Mironov, and V.V. Nosov, Izv. Vyssh. 
Uchebn. Zaved. SSSR, Radiofizika 17, No. 10, 1501–1511 
(1974). 
 
 

 


