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Propagation of solar radiation in the "atmosphere –– ocean" system is described 
using the model of two media with reflecting and transmitting smooth or wavy 
interface. The solution is represented in the form of linear and nonlinear functionals 
forming the optical transfer operator whose kernel is a vector function of the influence 
of the atmosphere and ocean. The vector function of the influence for horizontally 
homogeneous problem is the response of each medium to the external unidirectional 
radiation flux incident from the interface. 

 
The present paper deals with the mathematical models 

constructed for the detailed study of the radiation field 
formation and image transfer in the atmosphere–ocean 
system based on the numerical experiments. The method of 
the influence functions (IF) or fundamental solutions was 
developed as applied to two–medium problems with 
reflecting and transmitting smooth or wavy interface.1–4 
The basis for mathematical apparatus for constructing the 
IF models and optical transfer operator (OTO) is provided 
with a series of perturbation theory, theory of generalized 
solutions of kinetic equations, and theory of fundamental 
solutions of equations with differential operators in terms of 
partial derivatives. The complete solution of the problem on 
account of nonlinear approximations in the multiplicity of 
radiation interaction (reflection and transmission) with the 
interface is reduced to finding of the influence functions of 
the atmosphere and ocean, i.e., to the fundamental solutions 
of linear problems of the transfer theory independently for 
each medium and to calculation of nonlinear functionals 
whose kernels are the influence functions of the atmosphere 
θ

a
 and ocean θ

oc
. As a result, in addition to the complete 

solution, the explicit relation, which describes the optical 
transfer operator of the system, is determined between the 
measured radiative characteristics and the parameters of the 
interface between the media. The new results of the 
proposed approach are the reduction of numerical solution 
of a single boundary–value problem for two media to that 
of the two boundary–value problems independently for each 
medium and formulation of the OTO in the matrix form 
with the kernel being a two–component vector {Θ = θ

a
θ
oc

}. 

The constructed mathematical models of the IF and OTO 
allow one to develop new algorithms for remote sensing 
of the atmosphere–ocean system and image transfer 
theory. 

In this paper we restrict ourselves to consideration 
of a horizontally homogeneous problem, though the 
aforementioned approach was developed for the problem 
with inhomogeneities in horizontal planes. As we show 
below for homogeneous smooth or wavy interfaces the 
IF's of the atmosphere and ocean are the responses of the 
media to the propagation of an unidirectional wide beam. 

 

PROBLEM FORMULATION 
 

Propagation of solar radiation in the atmoshere–ocean 
system is described by two classes of problems: 

1) problems with a nonorthotropic boundary in which 
the ocean is modeled as a reflecting base (Fig. 1) and 

2) problems in the atmosphere–ocean system with an 
internal interface reflecting and transmitting the radiation 
(Fig. 2). 

 

 
FIG. 1.  

 

 
 

FIG. 2. 
 

The problems with a nonorthotropic surface were 
considered in detail in Refs. 1–4. In this paper we call 
attention to the problems in the atmosphere–ocean system 
(Fig. 2). 

The direction of radiation propagation is specified by 
the vector s = {μ, ϕ}, μ = cos υ, μ ∈ [–1, 1] on a unit 
sphere Ω = [–1, 1] × [0, 2π], where υ ∈ [0, 180°] is the 
zenith angle counted off from the positive direction of the z 
axis and ϕ ∈ [0, 2π] is the azimuth. The value ϕ = 0 is 
assumed to lie in a plane of solar vertical, i.e., a solar flux 
is incident on the layer boundary z = 0 in the direction 
s
0
 = {μ

0
, ϕ

0
} at the zenith angle υ

0
 ∈ [0, 90°], where 

μ
0
 = cos υ

0
 and the azimuth ϕ

0
 = 0. 

For downward transmitted radiation we introduce the 
hemisphere of directions Ω+ = {(μ, ϕ): μ > 0} and for upward 
reflected radiation we introduce Ω 

– = {(μ, ϕ): μ < 0}; 
Ω = Ω+ ∪ Ω 

–
. 

The boundary conditions are written down using the sets 
 

Γ
0
 = {(z, s): z = 0, s ∈ Ω+} ,  ΓH = {(z, s): z = H, s ∈ Ω 

–} , 
 

Γh+ = {(z, s): z = h, s ∈ Ω+} ,  Γh– = {(z, s): z = h, s ∈ Ω 
–} . 
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At the altitude z = h there is an interface between the 
two media. The radiation transmission through this interface 

is described by the reflection R
∧

1
 and R

∧

2
 and transmission 

T
∧

12
 and T

∧

21
 operators, where the subscript 1 corresponds to 

the upper layer (it is usually the atmosphere) and the 
subscript 2 – to the lower layer (ocean) 
 

[R
∧

1
Φ+](z = h, s) = ⌡⌠

Ω
+

 Φ(z = h, s′) R
1
(s, s′) ds′,  s ∈ Ω 

– ; 

 

[R
∧

2
Φ–](z = h, s) = ⌡⌠

Ω
–

 Φ(z = h, s′) R
2
(s, s′) ds′,  s ∈ Ω+ ; 

 

[T
∧

12
Φ+](z = h, s) = ⌡⌠

Ω
+

 Φ(z = h, s′) T
12

(s, s′) ds′,  s ∈ Ω+ ; 

 

[T
∧

21
Φ–](z = h, s) = ⌡⌠

Ω
–

 Φ(z = h, s′) T
21

(s, s′) ds′,  s ∈ Ω 
– ; 

 

The optical properties of the atmosphere and ocean are 
determined by vertical distributions of the coefficients of 
extinction σ

e
(z) = σ

s
(z) + σ

abs
(z), absorption σ

abs
(z), total 

scattering σ
s
(z) = σ

a
(z) + σ

m
(z) including aerosol σ

a
(z) and 

molecular σ
m
(z) components as well as by the total 

scattering phase function 
 

γ(z, χ) = 
σ

a
(z)

σ
s
(z) γa

(z, χ) + 
σ

m
(z)

σ
s
(z)  γ

m
(χ) 

 

which, in the general case, incorporates the aerosol γ
a
(z, χ) 

and molecular γ
m
(χ) = 3(1 – cos2χ)/(16π) components. 

The integro–differential operator of the kinetic equation 

K
∧
 ≡ D

∧
 – S

∧
 contains the transfer operator D

∧
 ≡ (s, grad) + σ

e
(z) 

and the collision integral S
∧

Φ = σ
s
(z)⌡⌠

Ω

 Φγds′. For the one–

dimensional plane problem (with horizontal homogeneity) the 
transfer operator is 
 

D
∧

z ≡ μ 
∂

∂z + σ
e
(z) ,  K

∧

z ≡ D
∧

z – S
∧
 . 

 
ON SEPARATION IN THE CONTRIBUTIONS OF THE 

ATMOSPHERE AND OCEAN  
 
Let us consider the boundary–value problem for the 

radiative transfer equation in the atmosphere–ocean system 
with the interface  
 

⎩⎪
⎨
⎪⎧

 

 K
∧

zΦ = 0 , Φ
Γ
0

 = f
0
 , Φ

ΓH
 = qR

∧

HΦ ,

Φ
Γh+

 = R
∧

2
Φ–

 + T
∧

12
Φ+

 , Φ
Γh–

 = R
∧

1
Φ+

 + T
∧

21
Φ–

 (1) 

 

without comprehensive analysis of the forms of the 
reflection and transmission operators. We make use of linear 
properties of the boundary–value problem in the form of 
Eq. (1) with respect to the sources and represent the total 
radiation field of the system in the form of a superposition 
 

Φ = Φ0 + Φ
a
 + Φ

aR + Φ
oc

 + Φq , 

 
whose components are the solutions of the following 
problems. 

The direct attenuated solar radiation Φ0 is the 
solution of the problem  
 

⎩⎪
⎨
⎪⎧

 

 D
∧

zΦ
0 = 0 ,  Φ0

Γ
0

 = [πΣ
λ
(s – s

0
)] ,

Φ0

ΓH
 = 0 ,  Φ0

Γh+
 = 0 ,  Φ0

Γh–
 = 0

  

 

for the upper layer z ∈ [0, h] and Φ0 ≠ 0 only for s = s
0
. 

The background radiation of the atmosphere Φ
a
 is the 

solution of the problem with null boundary conditions for 
the layer z ∈ [0, h] 
 

⎩⎪
⎨
⎪⎧ K

∧

zΦa
 = [S

∧
Φ0] , Φa Γ

0

 = 0 , Φa ΓH
 = 0 ,

Φa Γh+
 = 0 , Φ

a Γh–
 = 0 .

 

 
The radiation of the atmosphere reflected from the 

interface is the solution of the boundary–value problem for 

the layer z ∈ [0, h] with the source located at z = h 
 

⎩⎪
⎨
⎪⎧

 

 K
∧

zΦaR = 0 ,  Φ
aR Γ

0

 = 0 ,  Φ
aR ΓH

 = 0 ,

Φ
aR Γh+

 = 0 ,  Φ
aR Γh–

 = R
∧

1
Φ

aR
+

 + [R
∧

1
(Φ0

 + Φ
a

+)] 

 (2) 

 
and can be found as the sum of two components  
 
Φ

aR = Φ
aR
0  + Φ

aR
hz  . 

 

The component Φ
aR

0  is the contribution to atmospheric 

haze due to scattering in the upper layer of the direct 
attenuated radiation reflected from the interface 
(z ∈ [0, h]): 
 

⎩⎪
⎨
⎪⎧

 

 K
∧

zΦaR
0 = 0 ,  Φ

aR
0

Γ
0

 = 0 ,  Φ
aR
0

ΓH
 = 0 ,

Φ
aR
0

Γh+
 = 0 ,  Φ

aR
0

Γh–
 = R

∧

1
Φ

aR
0  + [R

∧

1
F0] .

 (3) 

 

Scattering of a diffuse component of haze reflected 
from the interface produces the component Φ

aR
hz  being the 

solution of the problem in the atmosphere (z ∈ [0, h]) 
 

⎩⎪
⎨
⎪⎧

 

 K
∧

zΦaR
hz = 0 ,  Φ

aR
hz

Γ
0

 = 0 ,  Φ
aR
hz

ΓH
 = 0 ,

Φ
aR
hz

Γh+
 = 0 ,  Φ

aR
hz

Γh–
 = R

∧

1
Φ

aR
hz

+

 + [R
∧

1
Φ

a 

+ ] .

 (4) 

 
The radiation produced in the atmosphere and incident on 
the interface z = h is the source of the light field component 
of the system Φ

oc
 in the formation of which the ocean is 

directly involved (Φ
oc

 ≠ 0 for z ∈ [0, H]) 
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⎩⎪
⎨
⎪⎧

K
∧

zΦoc
 = 0 ,  Φ

oc Γ
0

 = 0 ,  Φ
oc ΓH

 = 0 ,

Φ
oc Γh+

 = R
∧

2
Φ

oc

–
 + T

∧

12
Φ

oc

+
 + [T

∧

12
(Φ0

 + Φ
a 

+
 + Φ

aR

+ )] ,

Φ
oc Γh–

 = R
∧

1
Φ

oc

+
 + T

∧

12
Φ

oc

– .

 (5) 

 
After detailed examination we can introduce the 

superposition  
 
Φ

oc
 = Φ

oc

0  + Φ
oc

hz 

 
with separation of the brightness field components 
associated with the direct solar radiation Φ

oc

0  

 

⎩⎪
⎨
⎪⎧

 K
∧

zΦoc

0  = 0 ,  Φ
oc

0

Γ
0

 = 0 ,  Φ
oc

0

ΓH
 = 0 ,

Φ
oc

0

Γh+
 = R

∧

2
Φ

oc

0– + T
∧

12
Φ

oc

0+ + [T
∧

12
(Φ0 + Φ

aR

0 )] ,

Φ
oc

0

Γh–
 = R

∧

1
Φ

oc

0+ + T
∧

21
Φ

oc

0–       

 (6) 

 

and with the atmospheric haze Φ
oc

hz 

 

⎩⎪
⎨
⎪⎧

 K
∧

zΦoc

hz = 0 ,  Φ
oc

hz

Γ
0

 = 0 ,  Φ
oc

hz

ΓH
 = 0 ,

Φ
oc

hz

Γh+
 = R

∧

2
Φ

oc

hz– + T
∧

12
Φ

oc

hz+ + [T
∧

12
(Φ

a

+ + Φ
aR 

hz+)] ,

Φ
oc

hz

Γh–
 = R

∧

1
Φ

oc

hz+ + T
∧

21
Φ

oc

hz– .

 (7) 

 
The contribution of the illumination from the 

reflecting ocean bottom is found as a solution of the 
boundary–value problem 
 

⎩⎪
⎨
⎪⎧ K

∧

zΦq = 0 ,  Φq Γ
0

 = 0 ,  Φq ΓH
 = qR

∧

HΦq + [qE] ,

Φq Γh+
 = R

∧

2
Φq

– + T
∧

12
Φq

+ ,  Φq Γh–
 = R

∧

1
Φq

+ + T
∧

21
Φq

– ,

 (8) 

 
in which the source of radiation is the illuminance of the 

ocean bottom E = R
∧

H
Φ

oc

– . 

For the Lambertian ocean bottom in the case of one–
dimensional plane problem E = const and the solution of 
boundary–value problem (8) can be sought based on the 
formula  

 

Φq(z, μ, ϕ) = qEΨ(z, μ, ϕ)/(1 – qc
0
) ,  c

0
 ≡ R

∧
Ψ  

 
determining the explicit dependence of the illumination on 
the albedo of the ocean bottom q in terms of the 
transmission function of the Ψ–solution of the problem with 
isotropic insolation at z = H 
 

⎩⎪
⎨
⎪⎧ K

∧

zΨ = 0 ,  Ψ
Γ
0

 = 0 ,  Ψ
ΓH

 = 1 ,

Ψ
Γh+

 = R
∧

2
Ψ– + T

∧

12
Ψ+ ,  Y Gh–

 = R
∧

1
Ψ+ + T

∧

21
Ψ– .

 (9) 

 

EQUATIONS FOR THE INFLUENCE FUNCTIONS OF 
THE ATMOSPHERE AND OCEAN AND THE OPTICAL 

TRANSFER OPERATOR 
 
The solution of the problems for the atmospheric 

radiation components given by Eqs. (2)–(4) was studied in 
Refs. 1–4, where the ocean was taken into account as a 
reflecting nonorthotropic or Lambertian surface. The 
components of the field Φ

aR
0 , Φ

aR
hz , and Φ

aR were calculated 

in terms of the influence function of the atmosphere, i.e., 
the solution of the boundary–value problem 
 

{Kzθa
 = 0 , θ

a Γ
0

 = 0 ,  θ
a Γh–

 = δ(s – s–) . (10) 

 

Aforementioned problems (5)–(7) for determining the 
individual components of radiation formed in the ocean can 
be written down in the general form  
 

⎩⎪
⎨
⎪⎧

 

 K
∧

zΦoc
 = 0 ,  Φ

oc Γ
0

 = 0 ,  Φ
oc ΓH

 = 0 ,

Φ
oc Γh+

 = η(R
∧

2
F

oc

–  + T
∧

12
Φ

oc

+  + E
oc

(s)) ,

Φ
oc

0

Γh–
 = η(R

∧

1
Φ

oc

–  + T
∧

21
Φ

oc

+  E
a
(s)) ,

 (11) 

 

where the radiation sources are the illumination of the 
ocean from above, i.e., from the atmosphere, E

oc
(s) and the 

illumination of the atmosphere from below, i.e., from the 
ocean, E

a
(s). In particular, for problem (5) we have 

 

E
oc

(s) ≡ T
∧

12
(Φ0 + Φ

a

+ + Φ
aR
+ ) , 

 

for problem (6) 
 

E
oc

(s) ≡ T
∧

12
(Φ + Φ

aR
0 ) , 

 

for problem (7) 
 

E
oc

(s) ≡ T
∧

12
(Φ

a

+ + Φ
aR
hz+) , 

 
and for all three problems (5)–(7) E

a
(s) ≡ 0. 

Let us introduce a perturbation series for solving  
problem (11) 

 

Φ
oc

 = ∑
n=1

∞

 ηnΦn (12) 

 
with the parameter η, which is indicative of the event of 
passing through the interface, and the two–component 
vectors 
 

Φn = {Φ
a n, Φ

oc n}, E = {E
a
, E

oc
} , Θ = {θ

a
, θ

oc
} . (13) 

 

In the linear approximation (n = 1) the problem with 
two sources E

a
(s) and E

oc
(s) 

 

⎩⎪
⎨
⎪⎧

 

 K
∧

zΦ1
 = 0 ,  Φ

1 Γ
0

 = 0 ,  Φ
1 ΓH

 = 0 ,

Φ
1 Γh+

 = E
oc

(s) ,  Φ
1 Γh–

 = E
a
(s)
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separates into two problems: for the ocean (z ∈ [h, H]) 
 

{K
∧

zΦoc 1
 = 0 , Φ

oc 1 ΓH
 = 0 , Φ

oc 1 Γh+
 = E

oc
(s) (14) 

 
and for the atmosphere (z ∈ [0, h]) 
 

{K
∧

zΦa 1
 = 0 , Φ

a 1 Γ
0

 = 0 ,  Φ
a 1 Γh–

 = E
a
(s) ,  

 

where Φ
a 1

 ≡ 0 since E
a
(s) ≡ 0. 

Let us represent the illumination as a functional  
 

E
oc

(s) = 
1
2π

 ⌡⌠
Ω

+

 E
oc

(s+) (s – s+) ds+, 

 
then the solution of problem (14) can be written down as a 
linear functional (s ∈ Ω, z ∈ [h, H] 
 

Φ
oc 1

(z, s) = (θ
oc

, E
oc

) = 
1
2π

 ⌡⌠
Ω

+

 E
oc

(s+)θ
oc

(z, s, s+) ds+, 

 
whose kernel is the influence function of the ocean, i.e., the 
solution of the problem for the layer z ∈ [h, H] 
 

{K
∧

zθoc
 = 0 , θ

oc ΓH
 = 0 , θ

oc Γh+
 = δ(s – s+) . (15) 

 
In the second approximation (n = 2) the problem 

(z ∈ (0, H]) 
 

⎩⎪
⎨
⎪⎧

 

 K
∧

zΦ2
 = 0 ,  Φ

2 Γ
0

 = 0 ,  Φ
2 ΓH

 = 0 ,

Φ
2 Γh+

 = R
∧

2
Φ

1

– + T
∧

12
Φ

1

+ ,

Φ
2 Γh–

 = R
∧

1
Φ

1

+ + T
∧

21
Φ

1

–

 (16) 

 

separates into two problems (R
∧

1
Φ

a 1

+  = 0, T
∧

12
Φ

a 1

+  = 0): for 

the layer z ∈ [0, h] 
 

{K
∧

zΦa 2
 = 0 , Φ

a 2 Γ
0

 = 0 , Φ
a 2 Γh–

 = T
∧

21
Φ

oc 1

–  

 

and for the layer z ∈ [h, H] 
 

{K
∧

zΦoc 2
 = 0 ,  Φ

oc 2 ΓH
 = 0 ,  Φ

oc 2 Γh+
 = R

∧

2
Φ

oc 1

–  . 

 

The solution of problem (16) is written down for two 
components in the form of linear functionals 
 

Φ
a 2

(z, s) = (θ
a
, T

∧

21
Φ

oc 1

– ) = 
 

= 
1
2π

 ⌡⌠
Ω

–

 [T
∧

21
Φ

oc 1

– ](s–) θ
a
(z, s, s–)ds– = 

 

= 
1
2π

 ⌡⌠
Ω

–

  θ
a
(z, s, s–)ds– 

1
2π

 ⌡⌠
Ω

+

 [T
∧

21
θ
oc

– ](s
1

+) E
oc

(s
1

+) ds
1

+ , 

Φ
oc 2

(z, s) = (θ
oc
, R

∧

2
Φ

oc 1

– ) = 

 

= 
1
2π

 ⌡⌠
Ω

+

 [R
∧

2
Φ

oc 1

– ](s+) θ
oc

(z, s, s+) ds+ = 

 

= 
1
2π

 ⌡⌠
Ω

+

  θ
oc

(z, s, s+) ds+ 
1
2π

 ⌡⌠
Ω

+

 [R
∧

2
θ
oc

– ](s
1

+) E
oc

(s
1

+) ds
1

+ , 

 
or  
 

⎩⎪
⎨
⎪⎧

 

Φ
a2

 = (θ
a
, (T

∧

21
θ
oc

– , E
oc

)) = (θ
a
, T

∧

21
(θ

oc
, E

oc
)) ,

Φ
oc 2

 = (θ
oc

, (R
∧

2
θ
oc

– , E
oc

)) = (θ
oc
, R

∧

2
(θ

oc
, E

oc
)) .

 

 

For the third and subsequent approximations (n ≥ 3) 
the total problem (z ∈ [0, H]) 
 

⎩⎪
⎨
⎪⎧ K

∧

zΦn = 0 , Φn Γ
0

 = 0 , Φn ΓH
 = 0 ,

Φn Γh+
 = R

∧

2
Φn–1

–
 + T

∧

12
Φn–1

+  ,  Φn Γh–
 = R

∧

1
Φn–1

+
 + T

∧

21
Φn–1

–

 

 

separates into two problems according to the sources: for 
the layer z ∈ [0, h] 
 

{K
∧

zΦa n = 0,  Φ
a n Γ

0

 = 0,  Φ
a n Γh–

 = R
∧

1
Φ

a n–1

+  + T
∧

21
Φ

oc n–1

–  

 

and for the layer z ∈ [h, H] 
 

⎩⎪
⎨
⎪⎧ K

∧

zΦoc n = 0 ,  Φ
oc n ΓH

 = 0 ,  

Φ
oc n Γh+

 = R
∧

2
Φ

oc n–1

+
 + T

∧

12
Φ

a n–1

+
 .
 

 

 

Let us write down the linear functionals for several 
successive approximations including the terms engendered 
by the source E

a
 

 

n = 1  

 Φ
a 1

 ≡ (θ
a
, E

a
) , 

 Φ
oc 1

 = (θ
oc

, E
oc

) ; 

n = 2  

 
Φ

a 2
 = (θ

a
, R

∧

1
Φ

a 1

+  + T
∧

21
Φ

oc 1

– ) , 

 
Φ

oc 2
 = (θ

oc
, R

∧

2
Φ

oc 1

–  + T
∧

12
Φ

a 1

– ) ; 

n ≥ 3  

 
Φ

a n = (θ
a
, R

∧

1
Φ

a n–1

+  + T
∧

21
Φ

oc n–1

– ) ; 

 
Φ

oc n = (θ
oc

, R
∧

2
Φ

oc n–1

–  + T
∧

12
Φ

a n–1

– ) . 

 
We now determine the linear vector functional 

 

(Θ, f) = 

⎩⎪
⎨
⎪⎧(θ

a
, f

a
) = 

1
2π

 ⌡⌠
Ω

–

 θ
a
(z, s, s–)f

a
(s–) ds–,  

(θ
oc

, f
oc

) = 
1
2π

 ⌡⌠
Ω

+

 θ
oc

(z, s, s+)f
oc

(s+) ds+
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and the operation at the interface z = h 
 

P
∧
f ≡ P

∧
(Θ, f) = 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤R

∧

1
  T

∧

21

T
∧

12
 R
∧

2

 

⎣
⎢
⎡

⎦
⎥
⎤(θ

a
,
 
f
a
) 

(θ
oc

,
 
f
oc

)
 = 

 

= 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤R

∧

1
(θ

a
, f

a
) + T

∧

21
(θ

oc
, f

oc
)

T
∧

12
(θ

a
, f

a
) + R

∧

2
(θ

oc
, f

oc
)

 = 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤(R

∧

1
θ

a

+, f
a
) + (T

∧

21
θ
oc

–, f
oc

)

(T
∧

12
θ

a

+, f
a
) + (R

∧

2
θ
oc

–, f
oc

)

 , 

 
where 
 

[R
∧

1
θ

a

+](s, s–) = ⌡⌠
Ω

+

 
R

1
(s, s′) θ

a

+(h, s′, s–) ds′,  s, s– ∈ Ω– ; 

 

[T
∧

12
θ

a

+](s, s–) = ⌡⌠
Ω

+

 
T

12
(s, s′) θ

a

+(h, s′, s–) ds′, s ∈ Ω+, s– ∈ Ω– ; 

 

[R
∧

2
θ
oc

– ](s, s+) = ⌡⌠
Ω

–

 
R

2
(s, s′) θ

oc

– (h, s′, s+) ds′,  s, s+ ∈ Ω+ ; 

 

[T
∧

21
θ
oc

– ](s, s+) = ⌡⌠
Ω

–

 
T

21
(s, s′) θ

oc

– (h, s′, s+) ds′, s ∈ X–, s+ ∈ X+ , 

 

so that  
 

[P
∧
f](s) ≡ P

∧
(Θ, f)(s) =  

 

= 

⎩
⎪
⎨
⎪
⎧

 

1
2π

 ⌡⌠
Ω

–

 {[R
∧

1
θ

a

+](s, s–) f
a
(s–) +

+ [T
∧

21
θ

oc

– ](s, s–) f
oc
(s–)} ds–, s ∈ Ω – ,

1
2π

 ⌡⌠
Ω

–

 {[T
∧

12
θ

a

+](s, s+) f
a
(s+) +

+ [R
∧

2
θ
oc

– ](s, s+)f
oc
(s+)} ds+, s ∈ Ω+ . 

 

(17) 
 

Let us write the nth approximation in the vector form 
and make use of definition (17): 
 

Φ
1
 = ⎣
⎡

⎦
⎤0

Φ
oc 1

 = 
⎣
⎡

⎦
⎤(θ

a
, E

a
) 

(θ
oc

, E
oc

)  = (Θ, E) , 

 

F
1
 = P

∧
Φ

1
 = P

∧
(Θ, E) = P

∧
E = 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤T

∧

21 Φoc 1

–

R
∧

2 Φoc 1

–

 , 

 

Φ
2
 = (Θ, F

1
) = (Θ, P

∧
E) = (Θ, P

∧
Φ

1
) = (Θ, P

∧
(Θ, E)) , 

 

F
2
 = P

∧
Φ

2
 = P

∧
(Θ, F

1
) = P

∧
F

1
 = P

∧
2E = 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤R

∧

1
Φ

a 2

+  + T
∧

21
Φ

oc 2

–

R
∧

2 Φoc 2

–  + T
∧

12
Φ

oc 2

+

 , 

Φ
3
 = (Θ, F

2
) = (Θ, P

∧
Φ

2
) = (Θ, P

∧
Φ

1
) = (Θ, P

∧
2E) , 

 

F
3
 = P

∧
Φ

3
 = P

∧
(Θ, F

2
) = P

∧
F

2
 = P

∧
(Θ, P

∧
2E) = P

∧
3E . 

 
It can clearly be seen that two successive 

approximations are related by the recurrent formula  
 

Φn = (Θ, P
∧

Φn–1
) , 

 

which comprises the matrix operator describing the single 
passage through the interface z = h. Thus, the two–
component vector specifies the source at the interface z = h 
in the problem for the nth approximation  
 

Fn–1
 = P

∧
Φn–1

 = 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤R

∧

1
  T

∧

21

T
∧

12
 R
∧

2

 

⎣
⎢
⎡

⎦
⎥
⎤Φ

a n–1

+ (z = h,
 
s)

Φ
oc n–1

– (z = h,
 
s)

 = 

 

= 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤R

∧

1
Φ

a n–1

+  + T
∧

21
Φ

oc n–1

–

R
∧

2
Φ

oc n–1

–  + T
∧

12
Φ

a n–1

+

 . 

 
Let for n ≥ 2 

 

Φn = (Θ, P
∧

 n–1E) . 

 
Then for the (n + 1)th approximation the problem 
 

⎩⎪
⎨
⎪⎧

 

K
∧

zΦn+1
 = 0 , Φn+1 Γ

0

 = 0 , Φn+1 ΓH
 = 0 ,

Φn+1 Γh+
 = R

∧

2
Φn

– + T
∧

12
Φn

+ ,

Φn+1 Γh–
 = R

∧

1
Φn

+ + T
∧

21
Φn

–

 

 

separates into two problems: for the layer z ∈ [0, h] 
 

⎩⎪
⎨
⎪⎧

 

K
∧

zΦa n+1
 = 0 ,  Φ

a n+1 Γ
0

 = 0 ,

Φ
a n+1 Γh–

 = R
∧

1
Φ

a n
+  + T

∧

21
Φ

oc n
–

 

 

and for the layer z ∈ [h, H] 
 

⎩⎪
⎨
⎪⎧

 

K
∧

zΦoc n+1
 = 0 ,  Φ

oc n+1 ΓH
 = 0 ,  

Φ
oc n+1 Γh+

 = R
∧

2
Φ

oc n
–  + T

∧

12
Φ

a n
+  ,

 

 

and the two–component solution is obtained in the form of 
linear functionals  
 

Φ
a n+1

(z, s) = (θ
a
, R

∧

1
Φ

a n
+  + T

∧

21
Φ

oc n
– ) , z ∈ [0, h] , 

 

Φ
oc n+1

(z, s) = (θ
oc

, R
∧

2
Φ

oc n
–  + T

∧

12
Φ

a n
+  , z ∈ [h, H] , 
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or in the vector form 
 

Φn+1
 = (Θ, P

∧

nΦn) = (Θ, P
∧
(Θ, P

∧

 

n–1E)) = (Θ, P
∧

 

nE) . 
 

So, for n ≥ 1 (F
0
 ≡ E) 

 

Fn = P
∧
Fn–1

) = P
∧

Φn = P
∧

 

nE , 
 

Φn = (Θ, Fn–1
) = (Θ, P

∧
Φn–1

) = (Θ, P
∧

 

n–1E) , 
 

Φ = ∑
n=1

∞

 Φn = (Θ, E) + ∑
n=2

∞

 (Θ, P
∧

 

n–1E) = (Θ, E) + 

 

+ ⎝
⎛

⎠
⎞

Θ, ∑
n=2

∞

 
P
∧

 

n–1E  = (Θ, E) + ⎝
⎛

⎠
⎞

Θ, ∑
n=1

∞

 
P
∧

 

nE  = 

 

= ⎝
⎛

⎠
⎞

Θ, ∑
n=0

∞

 
P
∧

 

nE  = (Θ, Z
∧
E) ,  

 

where  
 

Z
∧
 ≡ ∑

n=0

∞

 
P
∧

 

n . 

 

Thus, the terms of the parametric series are the terms 
of the Neumann series in multiplicity of radiation passage 
through the interface. 

By separating out a background component Φ0 + Φ
a
, 

caused by radiation propagation only in the atmosphere, 
from the total radiation of the system, the contribution of 
the ocean influence can be described by boundary–value 
problem (11) with two nonzero sources 
 

E
a
 = R

∧

1
(Φ0 + Φ

a

+) ,  E
oc

 = T
∧

12
(Φ0 + Φ

a

+) . 
 

Before calculation of functionals of any 
approximation, we must calculate the expressions  
 

[R
∧

1
θ
a
](s, s–) , T

∧

12
 θ

a
](s, s–) , [T

∧

21
θ
oc
](s, s+) , and [R

∧

2
θ
oc
](s, s+) 

 

in discrete or analytical form as functions of the direction s 
and the parameters s– and s+. 
 

ON ACCOUNT OF THE CONTRIBUTION OF 
REFLECTING OCEAN BOTTOM 

 
At the lower boundary of the system (z = H) the law 

of reflection is prescribed by the operator 
 

[R
∧

HΦ] = 
1
π
 ⌡⌠
Ω

+

 Φ(z = H, s′)μ′ds′  

 

for the Lambertian orthotropic surface or by the operator  
 

[R
∧

HΦ](s) = ⌡⌠
Ω

+

 Φ(z = H, s′)η(s, s′) ds′  

 

for the nonorthotropic (e.g., Fresnel) surface. 
The solution of the problem for the illumination 

produced by the ocean bottom located at the altitude z = H 
 

⎩⎪
⎨
⎪⎧

 K
∧

zΦq = 0 , Φq Γ
0

 = 0 , Φq ΓH
 = qR

∧

HΦq + qEH ,

Φq Γh+
 = (R

∧

2
Φq

– + T
∧

12
Φq

+)ε , 

Φq Γh–
 = (R

∧

1
Φq

+ + T
∧

21
Φq

–)ε 

 

 

is found in the form of a parametric perturbation series  
 

Φq(z, s) = ∑
k=1

∞

 εkΦqk . 

 

In the zeroth approximation (k = 0) the radiation field 
is formed due to the illumination EH 
 

⎩⎪
⎨
⎪⎧

 

 K
∧

zΦq0
 = 0 ,  Φq0 Γ

0

 = 0 ,

Φq0 ΓH
 = qR

∧

HΦq0
 + qEH ,

Φq0 Γh+
 = 0 ,  Φq0 Γh–

 = 0

 

 

and is considered only in the ocean (z ∈ [h, H]). Taking 
into account the n–fold interaction with the interface we 
can obtain the problem for the system (z ∈ [0, H]) 
 

⎩⎪
⎨
⎪⎧

K
∧

zΦqn = 0 , Φqn Γ
0

 = 0 , Φqn ΓH
 = qR

∧

HΦqn ,

Φqn Γh+
 = R

∧

2
Φq n–1

–  + T
∧

12
Φq n–1

+  ,

Φqn Γh–
 = R

∧

1
Φq n–1

+  + T
∧

21
Φq n–1

–  ,

 (18) 

 

which can be separated into individual problems for the 
layers z ∈ [0, h] and z ∈ [h, H]. Let us introduce the 
superposition of radiation components produced by the 
rereflection from the ocean bottom and passage through the 
interface 
 

Φqn = Φqn
q  + Φqn

0  . 
 

Then we obtain the problem for the system z ∈ [0, H] 
 

⎩⎪
⎨
⎪⎧

 

K
∧

zΦqn
0  = 0 , Φqn

0

Γ
0

 = 0 , Φqn
0

ΓH
 = 0 ,

Φqn
0

Γh+
 = R

∧

2
Φq n–1

–  + T
∧

12
Φq n–1

+  , 

Φqn
0

Γh–
 = R

∧

1
Φq n–1

+  + T
∧

21
Φq n–1

–  

 (19) 

 

and for the layer z ∈ [h, H] 
 

{K
∧

zΦqn
q

 = 0 ,  Φqn
q

Γh+
 = 0 ,  Φqn

q
ΓH

 = qR
∧

HΦqn
q

 + qR
∧

HΦqn
0

 . (20) 

 

The solution of problem (19) is reduced to the 
solution of two problems: for the layer z ∈ [0, h] 
 

{K
∧

zΦqna

0  = 0 , Φqna

0

Γ
0

 = 0 , Φqna

0

Γh–
 = E

a n–1
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with the source 
 

E
a n–1

 = R
∧

1
Φq n–1

+  + T
∧

21
Φq n–1

–  
 

and for the layer z ∈ [h, H] 
 

{K
∧

zΦqnoc

0  = 0 , Φqnoc

0

ΓH
 = 0 , Φqnoc

0

Γh+
 = E

oc n–1
 

 
with the source 
 

E
oc n–1

 = R
∧

2
Φq n–1

–  + T
∧

12
Φq n–1

+  . 

 
Using the obtained results we find 
 
Φqna

0  = (θ
a
, E

a n–1
) ,  Φqnoc

0  = (θ
oc

, E
oc n–1

) . 

 
Problem (20) is the problem for the layer with the 

reflecting Lambertian or nonorthotropic surface1–4 and its 
solution can be written in the form of the functional 
 

Φqn
0 (z, s) = 

q
2π

 ⌡⌠
Ω

–

 θH(z, s, sH)
 
dsH × 

 

× 

⎩⎪
⎨
⎪⎧Eqn

0 (sH) + 
q
2π

 ⌡⌠
Ω

–

 [R
∧

θH](sH, s
1
) Eqn

0 (s
1
)
 
ds

1
 + 

 

+ ∑
k=3

∞

 
q

 

k–1

(2π)k–1 ⌡⌠
Ω

–

 [R
∧

θH](sH, s
1
) ds

1
 ... 

 

... ⌡⌠
Ω

–

 [R
∧

θH](sk–3
, sk–2

) dsk–2
 × 

 

× 

⎭⎪
⎬
⎪⎫⌡⌠

Ω
–

 [R
∧

θH](sk–2
, sk–1

) Eqn
0 (sk–1

) dsk–1
 . 

 

This explicit expression determines the relation between the 

illumination E0

qn ≡ R
∧

HΦ0

qn and the law of reflection RH in 

terms of the influence function of the ocean θH(z, s, sH) being 

the solution of the problem. 
 

{K
∧

θH = 0 , θH Γh+
 = 0 , θH ΓH = δ(s – sH) . 

 

This method of reduction of the boundary–value 
problem for two media with the interface to two boundary–
value problems for each medium separately provides more 
comprehensive study of the radiation transfer in such a 
complex system as atmosphere–ocean. The constructed models 
of the influence functions of the atmosphere and ocean are 
general–purpose and invariant under the properties of the 
boundaries. New formulation of the optical transfer operator 
of the atmosphere–ocean system turns out to be effective for 
the problems of remote sensing. The results presented here for 
a horizontally homogeneous problem are generalized for a 
three–dimensional problem with horizontal inhomogeneity of 
the interface and will be published in future. 
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