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A new method of constructing an optical transfer operator for an active opto–
electronic system of observation through a randomly rough interface in the 
"atmosphere––ocean" system is proposed. Based on the methods of the Green's 
functions and perturbation theory the general boundary–value problem is decomposed 
into a number of the simplest problems whose solutions are sought in the small–angle 
approximation of the radiative transfer equation. The expressions obtained take into 
account a radiation correlation on the randomly rough surface. They are compared 
with the results obtained by various authors. 

 
The simulation of the image transfer through the 

randomly rough interface (RRI) between two turbid media 
provides the basis for optimizing the active opto–electronic 
systems (OES) of observation of the underwater objects 
from the atmosphere and space. 

Phenomenological approach to the description of the 
image transfer1–4 based on the physically obvious 
assumptions makes it possible to obtain the analytical 
expressions for the basic characteristics of the light field; 
however, in this case it is rather difficult to indicate the 
limits of its applicability and its correctness. 

By virtue of the insufficient mathematic rigour in the 
phenomenological description a necessity has arisen in a 
rigourous mathematic formulation of the corresponding 
boundary–value problem with nonlinear boundary 
conditions5–8 and its decomposition into a set of the 
simplest problems whose solutions can be found in one or 
another approximation. 

Initially, this formalism was developed for a plane 
turbid layer6,8,10 upon exposure to natural radiation. The 
formulas for the image transfer through the RRI were 
obtained in Refs. 9 and 10 but they disregard the boundary 
correlation of radiation multiply passed through the RRI. 

Let us consider the general scheme of observing through 
the combination of two turbid media with allowance made for 
the RRI. As is shown below, an increase of the number of 
layers introduces no principal changes into equations which 
can be easily generalized for this case. For definiteness, we 
refer to the first medium as the atmosphere while to the 
second – as the ocean. The coordinate system is chosen as 
shown in Fig. 1. The underlying surface at the depth h + z is 

characterized by the diffuse reflection coefficient ρ(r′). The 

unit vectors are denoted by the symbol 
∧
, the elementary solid 

angle is designated by d l
∧
, and the radius vectors are assumed 

to lie in a horizontal plane. The positions of the illumination 
source S with the radiant flux Φ0 and the receiver of radiation 

R are specified by the radius vectors rS and rR. The unit 

vectors l
∧

S and l
∧

R specify the directions of the axes of 

directional patterns of the source ωS(r, l
∧

S) and the receiver 

ωR(r, l
∧

R), respectively. The rest of designations are shown in 

Fig. 1.  

 
 
FIG. 1. Generalized scheme of the opto–electronic system 
of observation. 

 
Let us use the following linear operators: 
 

AL = 
1
π ρ(r′) ⌡⌠

Ω+

 L(r′, l
∧

′)(z
∧
, l

∧
′)d l

∧
′ = L(r, l

∧
)⏐ l

∧
 ∈ Ω– , (1) 

 

R±L = 
1
π ⌡⌠

Ω±

 ρ(r′, l
∧
, l

∧
′) L(r′′, l

∧
′)(N

∧
, l
∧

′)d l
∧

′ = L(r, l
∧
)⏐ l

∧
 ∈ Ω±, (2) 

 

T±L = 
1
π ⌡⌠

Ω±

 τ(r′, l
∧
, l

∧
′) L(r′, l

∧
′)(N

∧
, l
∧

′)d l
∧

′ = L(r, l
∧
)⏐ l

∧
 ∈ Ω± , (3) 

 
where Ω± are the lower and upper hemispheres, respectively; 

L(z, r, l
∧
) is the brightness of the light field at the point (z, r) 

in the direction l
∧
; A is the operator of diffuse reflection by 

the underlying surface; R± and T± are the reflection and 

transmission operators of the RRI in the upper and lower 

hemispheres, respectively; N
∧
 = N

∧
(r) is the normal to the RRI. 

Below the argument z is omitted when it does not lead to 
misunderstanding. 
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The local reflectance and the refractive index of the 
RRI have the form 

 

ρ(r, l
∧
, l

∧
′) = 

π

( l
∧

′, N
∧

′)
 δ( l

∧
 – l

∧
′ – 2N

∧
 (N

∧
, l

∧
′)) ρF( l

∧
′, N

∧
) ; (4) 

 

τ(r, l
∧
, l

∧
′) = 

π

( l
∧

′, N
∧
)

 δ
⎩
⎨
⎧
l
∧ 

–
 

n′
n  l

∧
′ – 

 

– 
⎭
⎬
⎫

⎣
⎡

⎦
⎤

N
∧
 1 – ( )n′

n

2
[1 – (N

∧
, l

∧
′)2] – 

n′
n N

∧
(N

∧
, l

∧
′) τF( l

∧
′, N

∧
), 

 (5) 
 
where ρF and τF are the corresponding Fresnel coefficients; 

δ(⋅) is the Dirac delta function; n′ and n are the refractive 
indices of the atmosphere and ocean. 

Let us use the following notation: 
 

Γ1 = {(z, r, l
∧
) : z = 0, l

∧
 ∈ Ω+} ,

Γ2+ = {(z, r, l
∧
) : z = h, l

∧
 ∈ Ω+} ,

Γ2– = {(z, r, l
∧
) : z = h, l

∧
 ∈ Ω–} ,

Γ3 = {(z, r, l
∧
) : z = z + h, l

∧
 ∈ Ω–} .

 (6) 

 
The radiative transfer equation (RTE) is valid for the 

layers 
 

DL = SL , (7) 
 

where DL = ( l
∧
, ∇)L + ε(z)L is the differential transfer 

operator; SL = 
σ(z)
4π  ⌡⌠ � x(z, l

∧
, l

∧
′)L(z, r, l

∧
′′) d l

∧
′ is the 

operator of scattering; ε and σ are the extinction and 
scattering coefficients of the medium. 

The corresponding boundary conditions have the form 
 

⎭⎪
⎬
⎪⎫La⏐Γ1

 = Φ0ωS ,

La⏐Γ2–
 = R+L

a + T–L0 ,
 (8) 

 

⎭⎪
⎬
⎪⎫L0⏐Γ2+

 = T+L
a + T–L0 ,

L0⏐Γ3
 = AL0 ,

 (9) 

 
where La and L0 are the brightnesses of the light field in 
the atmosphere and ocean. Let us represent La = I a + Da 
and L0 = I 0 + D0, where Da and D0 are the brightnesses of 
the hazes of the atmosphere and ocean and I a and I0 are the 
brightnesses caused by re–reflections from the RRI and 
underlying surface. The form of the RTE is the same for 
each component because of linearity. In this case we obtain 
the following system of the boundary–value problems: 
 

⎭⎪
⎬
⎪⎫Da⏐Γ1

 = Φ0ωS ,

Da⏐Γ2–
 = 0 ;

 (10) 

 

⎭⎪
⎬
⎪⎫I a⏐Γ1

 = 0 ,

I a⏐Γ2–
 = R+(I + Da) + T–(I0 + D0) ;

  (11) 

⎭⎪
⎬
⎪⎫D0⏐Γ2+

 = T+(I
 a + Da) ,

D0⏐Γ3
 = 0 ;

 (12) 

 

⎭⎪
⎬
⎪⎫I0⏐Γ2+

 = R–(I0 + D0) ,

I0⏐Γ3
 = A(I0 + D0) .

 (13) 

 
Assuming that I0 = I↑ + I↓ let us transform boundary–value 

problem (13) 
 

⎭⎪
⎬
⎪⎫I↓⏐Γ2+

 = R–(D0 + I0) ,

I↓⏐Γ3
 = 0 ;

 (14) 

 

⎭⎪
⎬
⎪⎫I↑⏐Γ2+

 = 0 ,

I↑⏐Γ3
 = A(D0 + I0) .

 (15) 

 
The system of boundary–value problems (10)–(12), 

(14), and (15) is solved by the method of the Green's 
functions. Below the operation of spatial and angular 
superposition is denoted by the symbol "�". Let us assume 
that  

 

Da = Φ0 l
 a � ωS(r, l

∧
) ,  I a = l q

a � (R+D
 a + T–L0) ; (16) 

 

where l a = l a(r, l
∧
 → r′, l

∧
′)
 
, l ρ

a = l ρ
a(r, l

∧
 → r′, l

∧
′) are some 

functions. From Eqs. (10) and (11) on account of Eq. (16) 

we obtain the boundary–value problems for l a and l ρ
a  

 

⎭
⎬
⎫l a⏐Γ1

 = δ(r – r′)d( l
∧
 – l

∧
′) ,

l a⏐Γ2–
 = 0 ;

 (17) 

 

⎭
⎬
⎫l ρ

a⏐Γ1
 = 0 ,

l ρ
a⏐Γ2–

 = δ(r – r′)d( l
∧
 – l

∧
′) + R+l ρ

a 
 . (18) 

 

Thus, Eq. (17) corresponds to the boundary–value 
problem for the point unidirectional source (PU source) in 
the atmosphere, while Eq. (18) – to the PU source in the 
atmospheric layer with the reflecting RRI.  

Considering the perturbations caused by the RRI to be 

small, we expand l ρ
a in a series of the perturbation theory in 

terms of the multiplicity of reflections from the RRI  

l ρ
a = ∑

n=0

∞

 l ρ 
(n). In this case the relation l ρ 

(n) = R+l ρ  
(n–1) is valid 

for the boundary conditions. In addition, lρ
0 = δ(r – r′)δ(l – l′) 

for n = 0. As a result we obtain 
 

l ρ
a= ∑

n=0

∞

 l ρ 
(n) = ∑

n=0

∞

 (l a � R+)
n l a , (19) 

 

where boundary–value problem (17) corresponds to the 

Green's function l a. 
In analogy with Eq. (10) and under the assumption that 

D0 = l0 � T+ I a boundary–value problem (12) can be reduced 

to the superposition of the RTE with the Green's function 

l0 = l0(r, l
∧
 → r′, l

∧
′) for the PU source in the ocean. 



546   Atmos. Oceanic Opt.  /August  1992/  Vol. 5,  No. 8 I.E. Astakhov et al. 
 

 

In analogy with the transformations made for Eq. (18) 
we derive from Eqs. (14) and (15) 

 
I↓ = l1 � (R–D0 + R–l2(AD0 + AI↓)) , 

 (20) 

I↑ = l2 � (AD0 + Al1 � (R–D0 + R–I↑)) ,  

 

where l1 = ∑
n=0

∞

 (l0 � R–)nl0 , l2 = ∑
n=0

∞

 (l0 � A)n l0 .  

 
Correspondingly, solving the system of Eqs. (20) we obtain 
 

⎭
⎬
⎫I↓ = ∑

n=0

∞

 (l1 � R–l2 � A)nl1 � R–(1 + l2 � A)D0 ,

I↑ = ∑
n=0

∞

 (l2 � Al1 � R–)nl2 � A(1 + l1 � R–)D0 .

 (21) 

 
Taking into account that L0 = I↑ + I↓ + D0 on the 

basis of Eqs. (16) and (21) we have 
 

La = I a + D a = (1 + l ρ
a � R+)D a + l ρ

a � T–OI a , (22) 

 
where O is the operator of the radiation transfer through 
the RRI and ocean layer 
 

O = 
⎣
⎡1 + ∑

n=0

∞

 (l1 � R–l2 � A)nl1 � R–(1 + l2 � A) + 

 

+ 
⎦
⎤∑

n=0

∞

 (l2 � Al1 � R–)nl2 � A(1 + l1 � R–) l0 � T+ . 

 
The solution of integral equation (22) can be represented by 
the Neumann series  
 

La = ∑
n=0

∞

 (l ρ
a � T–O)n(1 + l ρ

a � R+) l
 a � ωS. (23) 

 
On the basis of the constructed optical transfer 

operator of the ocean with allowance made for the RRI, 
series (23) makes it possible to analyze the contribution of 
the individual components to a random realization of the 
resulting brightness distribution over the input pupil of the 
OES using the Green's functions of the RTE obtained 
preliminary for the atmosphere and ocean. 

Based on Eq. (23) we can obtain the relations for any 
multiplicity of the radiation re–reflection from the RRI and 
underlying surface. For simplicity we take into 
consideration only those terms of the expansion in 
perturbations which are shown in Fig. 2, since for wide 
class of applied problems the reflection from the RRI and 
backscattering in the atmosphere and ocean can be assumed 
to be negligible.2–4,10 In this case we have  

 

La = Da + D0 + B + S , (24) 
 
where  
 

D a = Φ0 l
 a � ωS ,  D

0 = Φ0 l a � T–l 0 � T+l
 a � ωS , 

B
 

= Φ0 l
 a

 � R+l
 a

 � ωS ,  S = Φ0 l
 a

 � T–l 

0
 � Al 

0
 � T+l

 a � ωS. (25) 

 
Here B denotes the glint reflections of radiation from the 
RRI and S is the valid signal. 

 
 

FIG. 2. Structure of the optical signal in the OES of 
observation. Here Da is the haze of the atmosphere, D0 is 
the haze of the ocean, B is the glint reflection from the 
RRI, and S is the valid signal. 

 

Based on the optical reciprocity theorem describing the 
relation between the volume lV and surface l0 Green's 

functions13 we obtain
 
 

⌡⌠
Ω+

 l0(r′, l
∧

′ → r, l
∧
)d l

∧
′ = ⌡⌠

X+

 lV(r′, l
∧

′ → r, l
∧
)( l

∧
′, z

∧
)d l

∧
′ = 

=
 
e0(r′ → r, l

∧
) , (26) 

 

where e0(r′ → r′, l
∧
) is the Green's function of a point 

diffuse source in the ocean (PD source). Hence  
 

l0Al0 = 
1
π ⌡⌠ ρ(r′) e0(r′ → r1, l

∧
1) e0(r′ → r2, l

∧
2)d

2r′ ≡ Q e1e2.(27) 

 

Taking into account the receiving aperture and after 
averaging over all possible realizations we obtain the 
average valid signal in the form 

 
<PR> = Φ0QωR � l a � e1 � <T–T+>e2l

 a � ωS = 
 

= Φ0QωR � l a � O1 � l a � ωS = Φ0 ⌡⌠ ρ(r′)ωR(n
∧

R → l
∧

R) × 

 

×
 
l a(r2, l

∧
 2 ′  → rR, l

∧
R) O1(r′; r1, l

∧
 1 ′  → r2, l

∧
 2 ′ ) × 

 

×
 
l a(rS, l

∧
S ′  → r1, l

∧
1) ωS(n

∧
S → l

∧
S)d l

∧
1d l

∧
2d l

∧
Sd l

∧
Rd2r1d

2r2, (28) 

 
where O1= e1�<T–T+>e2 is the first approximation of the 

operator of image transfer through the RRI and ocean layer 
while the angular brackets denote the operation of 
statistical averaging. 

Let us assume that the field of slopes of the RRI obeys 
the normal distribution.3  Taking into consideration that n′ = 1 
in the approximation of small incidence angles of radiation 

((N
∧
, l

∧
′) ≈ 1 in paraxial optics approximation) we obtain 

 

<T–T+>=
t2n2

( )2σ2 1–Γ2 2
(n–1)4⌡⌠ d l

∧
2d l

∧
1θ(d l

∧
 1 

′ →l1, l2→ l
∧

 2 

′ ),(29) 
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where 
 

θ( l
∧

 1 ′  → l1, l2 → l
∧

 2 ′ ) = 
 

= exp⎣
⎡

⎦
⎤

– 

(nl1 
′ – l1)

2 + (nl2 
′ – l2)

2 – 2Γ(nl1 
′ – l1)(nl2 

′ – l2)

2σ2(1 – Γ2)(n – 1)2  

 

is the characteristic two–point operator of the RRI; 

t = τF( l
∧

′, N
∧
) ≈ τF(1) is the transmittance of the RRI; σ2 and 

Γ are the variance and correlation coefficient of the slopes 

of the RRI, respectively; l1, l1
′, l2, and l2

′ are the projections 

of the corresponding unit vectors onto the horizontal plane. 
For the media with anisotropic scattering and small 

optical depths it is convenient to solve the RTE in the 
small–angle approximation (SAA). All forms of the SAA 
are equivalent,14 therefore, to make the subsequent analysis 
more convenient, let us take the SAA in the form3,4 
 

e(r′ → r, l
∧
) = ⌡⌠ Φ(z, k) exp[ik(r′ – r)/z]d2k , (30) 

 

where l = r/z and the function Φ(z, k) has the form  
 

Φ(z, k) = z–2exp

⎩
⎨
⎧

⎭
⎬
⎫

⌡⌠
z

0

 [– ε(ζ) + σ(ζ) x(ζk/z)]dζ  . (31) 

 

On account of Eqs. (29), (30), and (31) the relation for O1 

assumes the form  
 

O1(r′; r1, l
∧

 1 ′  → r2, l2' ) = 
t2

n2 ⌡⌠
 

 
Φ(z, k1)Φ(z, k2) × 

 

× exp⎣
⎡– 

σ2

2  ( )n – 1
n

2
(k1

2 + k2
2 + 2Γk1k2) – 

i
z (r1k1 + r2k2) + 

 

⎦
⎤+ 

i
z r′(k1 + k2) + 

i
n
 

 
(k1l 1

′  – k2l 2
′ ) d2k1d

2k2 . (32) 

 

For subsequent calculations the atmospheric 
transmission is assumed to be much better than the ocean 
transmission and the baseline between the receiver and 
emitter is much shorter than the distance to the object, i.e., 

 

la � ωS = ωS(l 1
′ ) δ(r1

′  – hl 1
′ ) , la � ωR = ωR(l 2

′ ) δ(r2
′

 – hl 2
′ ). (33) 

 

Relations (33) correspond to the third observation 
scheme of Ref. 4 in which the image is formed by means of 
simultaneous scanning of the directional patterns of the 
source and receiver. 

Under the assumption of statistical uniformity of the 
field of the slopes of the RRI Γ(r1, r2) = Γ(r1 – r2) = Γ(ρ) 

on account of Eqs. (32) and (33) we derive from Eq.
 
(28) 

 

<PR(r0)> = ⌡⌠ ρ(r′) f(r0 – r′)d2r′ , (34) 

 

where 
 

f(r′) = 

t2Φ0

n2h2 

⌡⌠
 

 
Φ( )z, K + 

k
2  Φ( )z, K – 

k
2 ωS( )U + 

H
z  K  × 

 

× ωR( )U – 
H
z  K  exp⎣

⎡– 
i
z 2Kr′ – 

σ2

2  ( )n – 1
n

2
 × 

 

× [ ](1 + Γ) K2 + (1 – Γ) 
k
4  – ⎦

⎤i
2h

 

 
ρ( )H

z  k + 2U  × 

 

× d2K d2k d2U d2ρ   (35) 
 

is the point spread function of the OES of observation 
through the turbid layer with allowance made for the RRI; 
H = h + z/n is the reduced height on account of the 

refraction; r0 = r0( l
∧

S, l
∧

R) is the coordinate of the sighting 

point in the object plane. 
Let us introduce an optical transfer function (OTF) of 

the OES of observation  
 

F(p) = ⌡⌠
 
 f(r′)exp(ir′p/H)d2r′ = 

z2t2Φ0

n2h2  × 

 

× exp⎣
⎡

⎦
⎤– 

σ2

4  ( )n – 1
n

2 H2

z2  p2  
⌡
⌠

 

 
Φ( )z, x + 

z
2H p  × 

 

× Φ( )z, x – 
z

2H p  ωS(y) ωR(y – p) × 

 

× exp⎣
⎡

⎦
⎤– 

σ2

4  ( )n – 1
n

2

(1 – Γ)x( )x – 

z
H p  – 

iH
zh  ρ( )x – 

z
H y × 

 

×
 
d2ρd2xd2y , (36) 

 

where x = 
1
2 [zp/H – k], y = U + p/2, and p is the angular 

spatial frequency. 
Let us analyze the OTF of the system. When the plane 

wave is incident on the RRI ωs(⋅) = δ(⋅), Eq. (36) is 

equivalent to the well–known phenomenological 
expression3,4 for observing the objects under conditions of 
solar illumination. Let us assume that the observation is 
carried out by means of the ideal electro–optical image 
converter (EOIC) with ωR(⋅) = 1 for uncorrelated swell, 

i.e., for Γ(ρ) = 0. Then  
 

F(p) = 
z4t2Φ0

n2H2  exp{– σM
2 ρ2} Φ(z, 0) Φ( )z, p 

z
H  , 

 

σM
2  = 

s2

2 ( )n – 1
n

2 H2

z2  , (37) 

 

which corresponds to the well–known formula for the OTF 
for observation through the ocean surface. This formula was 
obtained for the first time by Yu.–A.R. Mullamaa.1  

In applied calculations it is convenient to approximate 
the spectra of the real scattering phase functions of the 
radiation of the source and the directional patterns of the 
receiver by the Gaussian functions ωS(y) = exp(– ω0

2 y2/2) 

and ωR(y) = exp(– Ω0
2 y2/2) and represent the coefficient of 

the swell correlation in the form Γ(ρ) = 1 for ⏐ρ⏐ ≤ ρ0 and 

Γ(ρ) = 0 for ⏐ρ⏐ ≥ ρ0, where ρ0 is the effective length of the 

swell correlation. This representation is physically incorrect  
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but it does not distort the final results in the case of 
appropriate choice of ρ0 and is generally accepted in the 

literature.2–4 In the cases Ω0 � ω0 or Ω0 � ω0 most often 

encountered in practice after corresponding transformations 
we finally obtain for the OTF of the OES 

 

F(p) = 
z4t2Φ0

n2H2  exp[ ]– 
γ2

2p2 – σM
2 p2 Φ(z, 0) Φ(z, zp/H) × 

 

× 

⎩⎪
⎨
⎪⎧
1 + 

⌡
⌠ 

 [ ]1 – exp(– 2σM
2 x(x – p))  

Φ(z, zx/H)
Φ(z, 0)  × 

 

× 
⎭⎪
⎬
⎪⎫Φ(z – z(x – p)/H)

Φ(z, zp/H)

 

 
q(d⏐x – p⏐d2x)  , (38) 

 

where 
1

γ2 = 
1

ω0
2 + 

1

Ω0
2 , 

 

q(x) = ⌡⌠
0

ρ
0
/hd

 exp(– 0.5ξ2) J0(ξx)ξdξ ,  d = Ω0
2 + ω0

2 , 

 
and J0 is the zero order Bessel function. 

Analysis of Eq. (38) shows that the OTF of the active 
OES of observation can be represented in the most general 
form by the sum of two terms, the first of which is the 
product of the OTF of the ocean and the OTF of the RRI, 
while the second term is associated with the radiation 
correlation on the RRI and is nonlinearly dependent on the 
corresponding OTF. 

On the basis of Eq. (25) we can obtain the relation for 
the backscatter interference (BSI) recorded by the receiver 
with the directional pattern ωR(⋅) 

 

Pbsi = Φ0ωR � l a � T–l 0 � T+l 
a � ωS , (39) 

 
where l 0 can be found from the boundary–value problem 
similar to Eq. (17). 

The error in the solution of the radiative transfer 
equations in the small–angle approximation becomes large 
when taking into account the radiation scattering at large 
angles14 (larger than 60°). Therefore, let us represent l 0 as 
a series of the perturbation theory in a small parameter of 
backscattering while the integral operator of the RTE – as 
the sum of "sharp" and "blunt" terms 

 

l0 = ∑
n=0

∞

 εnl s 
(n) , S = Ss + εSb , ε → 0 . (40) 

 
In this case the RTE is reduced to the system of coupled 
equations 
 

Dl s 
(n) = Ssl s 

(n) + Sbl s  
(n–1) , Dl s 

(0) = Ssl s 
(0) , (41) 

 
and the RTE in the small–angle approximation corresponds 
to the zeroth term of the series. 

The solution of Eq. (41) can be represented as the 
superposition of the Green's function of the homogeneous 
radiation transfer equation with the source function Sbl s  

(n–1), 

i.e., 
 

l s 
(n) = l 0 � Sbl s  

(n–1) = (l 0 � Sb)
nl 0 . (42) 

 

In real media backscattering can be considered negligible 
which makes it possible to take into consideration only the 
first term of expansion ls

1 = l 0 � Sbl 
0. For isotropic 

backscattering (xb(l̂, l
∧′) = xπ) this leads to the equation  

 

l s 
(1)

 = 

σxπ

4π  ⌡⌠ ⌡⌠ e0(r′→r2, l
∧

2) e
0(r′→ r2, l

∧
2)d

2r′ dz = CBe0e0,(43) 

 

where Cf = ⌡⌠ f(⋅)dz and Bf = 
σxp

4π ⌡⌠ f(⋅)d2r are the new 

operators. 
Hence, after averaging we obtain for Eq. (39) 
 

<Pbsi> = Φ0CBωR � l a � O1 � l a � ωS . (44) 
 

Action of the operator B will be equivalent to that of the 
operator A in Eq. (1) if we set ρ = σx/4π which leads to the 
relation 
 

<Pbsi> = Φ0CAωR � l a � O1 � l a � ωS ρ = σ xπ/4π . (45) 

 

For short optical baseline and transparent atmosphere 
Eq. (45) can be simplified  

 

<Pbsi> = Φ0⌡⌠
0

z

 AωR � l a � O1 � l a � ωSdz = Φ0

σxπ

4π  ⌡⌠
0

z

 F(z, 0)dz ,        

 (46) 
 

i.e., the statistically average backscatter interference can be 
expressed through an integral of the OTF. 

On the basis of Eq. (25) we obtain for the statistically 
average signal of glint reflection from the RRI recorded by the 
receiver  

 

<Pg> = <ωR � B> = ωR � l a � <R+>l a � ωs , (47) 
 

where  
 

<R+> = ⌡⌠
Ω+

 w1(N
∧
)ρF (N

∧
0, l

∧
′)d l

∧
′ , (48) 

 

w1(N
∧

0) is the single–point function of the distribution of the 

slopes of the RRI, and N
∧

0 is determined from the condition  

l̂ – l
∧

′ – 2(N
∧

0(N
∧

0, l
∧

′)) = 0. 

For the short optical baseline and transparent 
atmosphere and for observation with the help of an ideal 
electro–optical image converter Eq. (47) assumes the form  

 

<Pg> = h–2Φ0ωS( l
∧

R)w1(N
∧

0)ρF(N
∧

0 l
∧

R) , 

 (49) 

N
∧

0 = ( l
∧

S – l
∧

R)/⏐ l
∧

S – l
∧

R⏐ ,  
 

which is equivalent to the well–known relation presented in 
Ref. 15. 

To illustrate the possibilities of the method we carried 
out the calculations of the basic characteristics of the image 
transfer in the active pulsed opto–electronic system of 
observation. Figure 3 shows the curves of brightness 
distributions over the input pupil of the OES in observation of 
the disk with a radius of 1 m at a depth of z = 0.5 m 
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from different altitudes h in the atmosphere on account of the 
backscatter interference, glint reflection, and swell variance σ2. 
We considered the cases of observation in the positive and 

negative contrasts at different depths zst of the strobe of 

illumination. 

 
 

FIG. 3. Normalized brightness distribution over the input 
pupil of the OES. zst = 0.01 m: 1) h = 100 m, σ2 = 0; 2) 

h = 100 m, σ2 = 0.2; 3) h = 50 m, σ2 = 0; 4) h = 50 m, 
σ2 = 0.2; 5) h = 30 m, σ2 = 0; 6) h = 30 m, σ2 = 0.2, and 
zst = 0.51 m, and 7) h = 30 m, σ2 = 0. 
 

 
 

FIG. 4. Optical transfer function of the OES of observation. 
h = 30 m. Narrow beam: 1) z = 1 m, σ2 = 0, ρ0 = 0; 2) z = 3 m, 

σ2 = 0, ρ0 = 0; 3) z = 3 m, σ2 = 0.2, ρ0 = 0; 4) z = 3 m, σ2 = 0.2, 

ρ0 = 0.5; 7) z = 1 m, σ2 = 0.2, ρ0 = 0; 8) z = 1 m, σ2 = 0.2, 

ρ0 = 0.5. Plane wave: 5) h = 3 m, σ2 = 0 and 6) z = 3 m, 

σ2 = 0.2. 
 

The OTF of OES of observation as functions of the depth, 
swell variance, and correlation length ρ0 with illumination by a 

plane wave and narrow light beam with a divergence of 3° are 

shown in Fig. 4. The extinction and scattering coefficients were 

equal to 1 and 0.6 m–1, respectively; the refractive index of 
water was 1.33. The calculations were performed for the 
Heneye–Greenstein scattering phase function with g = 0.97 
and optical baseline of 0.5 m. 
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