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Influence of the trajectory bending on spectral shifts of rovibrational lines of 
molecules is studied. The first order term of the interruption function is calculated 
using rigorous solutions of the classical dynamic equations. A universal function of 
two dimensionless arguments that is independent of the parameters of 
intermolecular potential and the initial conditions of a collision is derived. This 
function enables one to account for actual trajectories in calculations. The errors of 
calculations caused by the use of a model of linear trajectories are estimated for the 
water vapor and methane spectral lines broadend by foreign gases. 

 

In recent years a lot of papers have been published 
(see, for example, Refs. 1–8) that are devoted to 
measurements and calculations of shifts of the 
rovibrational absorption lines of atmospheric gases caused 
by the nitrogen, oxygen, and air pressure. A comparison 
of measurement data with the calculational ones has 
shown quite a good agreement. At the same time the 
necessity to improve the calculational techniques first of 
all for correct statement of the inverse problem on 
determining the molecular characteristics from the line 
shift measurements is evident.  

In Refs. 1, 4, and 7 we investigated the effect of 
intermolecular interactions on the line shifts and showed 
that the vibrational dependence of constants entering into 
isotropic component of the polarization potential which, 
for example, almost completely determines the "red" line 
shift of water vapor in the near–IR and visible spectral 
regions should be taken into account. In this paper we 
investigated the effect of trajectory bending of colliding 
molecules on contribution of the above–mentioned part of 
intermolecular interaction potential into the shift of the 
rovibrational line center.  

Earlier calculations of the absorption line shifts used 
a straight–line trajectory approximation, which, 
unfortunately, is inapplicable to the case of low 
temperatures and weakly broadening lines. The "strong 
collisions" (in accordance with the classification proposed 
in Ref. 9) correspond to the case of b

0
 > r

c
, where b

0
 is 

the cut off parameter in the Anderson theory and r
c
 is the 

distance of the closest approach of colliding molecules. 
For the strong collisions the broadening coefficients are 
relatively large and process of absorption is interrupted before 
the trajectory of the relative motion deviates from the 
rectilinear one. If the line shape is formed by weak collisions 
when b

0
 < r

c
, the line is, first of all, weakly broadened with a 

relatively large shift of the center, and, second, the trajectory 
bending may be an important factor in calculations.  

 
 

 
 
 

At low temperatures the fraction of "slow" molecules 
is large and therefore the trajectory bending shows a 
stronger effect and weak collisions make a larger 
contribution to the line center shift.  

In earlier studies the trajectory bending effect was 
taken into account in the calculations of half-widths 
performed using the Anderson–Tsao–Curnutte–Frost 
(ATCF)10,11 method and other semiclassical methods, for 
example, the Robert–Bonamy9 method. In the above–
mentioned papers the models of effective rectilinear 
trajectories have been used.  

In this paper the exact solutions of classical dynamic 
equations describing the relative motion of colliding 
molecules are used to calculate the first order term S

1
(b) 

of the interruption function.  

 

1. CONTRIBUTIONS OF DIFFERENT INTERACTIONS 

INTO THE FORMATION OF THE MOLECULAR 
ABSORPTION LINE SHIFTS IN THE VISIBLE 

SPECTRAL REGION  

 

In the impact theory the half-width and the line 
shift are determined by the first– and second–order terms 
of the interruption function.10 Their relative contributions 
into the shift are different in different spectral regions: 
for lines of pure rotational transitions the contribution of 
S

1
(b) is equal to zero and the broadening and shift 

coefficients are determined by S
2
(b), for the lines in the 

near–IR and visible regions the line shifts are almost 
completely determined by the first–order term S

1
(b).7  

For example, in Table I the results of calculations of 

contributions of different interactions to the line shifts of 

the H
2
O 3ν

1
 + ν

3
 band induced by the nitrogen pressure 

are given. Earlier such calculations have been done in 
Ref. 4.  
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TABLE I. Contributions of the intermolecular potential components into the line shift of the H
2
O 3ν

1
 + ν

3
 band caused by N

2
 

pressure.  
 

 f   i  Sdq10
3 Sqq10

3 Sdu10
3 S

1
103 δif10

3 Experiment, 
Ref. 3 

422 523 1.15 –0.008 0.005 –11.0 –9.9 –9.4 
515 616 –2.00 –0.022 –0.036 –14.8 –16.9 –19.4 
505 606 –2.43 –0.030 –0.031 –14.5 –16.9 –15.7 
413 514 –3.55 –0.014 0.0007 –10.6 –14.1 –15.5 
762 761 2.05 0.003 0.006 –25.9 –23.8 –26.1 
330 431 3.34 0.013 –0.006 –13.7 –10.4 –10.3 
331 432 3.45 –0.023 –0.003 –14.5 –11.1 –12.0 
660 661 1.95 0.006 0.021 –28.1 –26.1 –26.3 
321 422 0.64 0.003 –0.002 –10.8 –10.2 –10.6 
414 515 –2.46 –0.021 –0.014 –12.5 –14.9 – 

404 505 –2.90 –0.038 –0.009 –11.8 –14.7 – 

312 413 –0.40 –0.028 0.005 –10.3 –10.7 –13.1 
505 524 –2.56 –0.031 –0.027 –13.3 –15.9 –21.1 
322 423 –0.42 0.015 –0.005 –11.7 –12.1 –10.5 
303 404 –3.37 –0.048 0 –10.3 –13.7 –13.2 

 
Note: The contribution of dipole–hexadecapole interaction is designated as Sdu. 

  
The calculations were performed by the ATCF 

method. The developments of the method necessary for 
the line shift calculations are presented in Refs. 1, 4, and 
7. In the calculations we took into account the dipole–
quadrupole, quadrupole–quadrupole, and dipole–
hexadecapole interactions as well as the contribution from 
the isotropic component of the potential. Calculating the 
S

1
(b) term we took into account the polarization 

potential and its constant dependences on the vibrational 
state of the water vapor molecule.  

Table I presents: in the first two columns the 
quantum numbers, then the contributions to the line 
shifts coming from the dipole–quadrupole, quadrupole–
quadrupole, and dipole–hexadecapole interactions, 
respectively. Then the contribution from the term S

1
(b) is 

given and, finally, the coefficient of total line shift and 
its experimental value from Ref. 3 are presented.  

It can be seen, that for the band 3ν
1
 + ν

3
 the 

contribution from S
1
(b) significantly exceeds the 

contribution coming from the electrostatic component of 
the potential (for some lines up to 10 times). This is 
explained by a strong change of the molecular 
polarizability under the action of vibrational excitation.1 
From this it follows that the line shift in the visible 
spectral region can be described using an approach similar 
to the adiabatic one and taking into account only the 
first–order term of the interruption function related to 
the vibrational phase shift. Therefore it seems to be useful 
to investigate the role of the relative motion trajectory 
bending by a collision when the first–order term of the 
interruption function is calculated.  

Let us note that in the ATCF method the real part 
of S

2
(b) determines the cut off parameter b

0
 and therefore 

it also influences the final result. However, as the 
calculations for the case of water vapor lines broadening 
by air have shown, the parameter b

0
 weakly depends on 

the account for the trajectory bending since it is 
determined by a "strong" dipole–quadrupole interaction. 
As a result, the trajectory bending can be taken into 
account only in one term of the interruption function.  

 
 

2. CALCULATION OF S
1
(b) TERM FOR REAL 

TRAJECTORIES 
 

In the below discussion we assume that the 
conditions for applicability of the impact approach are 
satisfied and therefore the model of uncorrelated binary 
collisions is used. The relative motion of colliding 
molecules is described by classical trajectories (kinetic 
energy of molecules is assumed to be sufficiently large) so 
that the energy exchange between the translational and 
internal degrees of freedom can be neglected. Under such 
an assumption, it is natural to assume that the energy and 
the momentum of relative molecular motion are conserved 
during the collision.  

Within the framework of a semiclassical line 
broadening theory, irregardless of assumptions on the 
trajectory and the molecular interaction forces, the first–
order term of interruption function can be written in the 
form:  
 

S(1)
ifj(b, υ) = ∑

n

 (C(n)
ij  – C(n)

fj ) 
1

�
 
⌡⌠
– ∞

∞

 
dt

r(t, b, υ)n
 , (1) 

 

where b is the impact parameter, υ is the initial relative 
velocity, r(t, b, υ) is the distance between the center of 
masses of colliding molecules, i and f are quantum 
numbers of the initial and final states of a transition, j 
designates the set of quantum numbers of a foreign gas 
molecule, C(n)

ij  and C(n)
fj  are some combinations of the 

constants of broadening and absorbing molecules 
depending on vibrational quantum numbers, and 
n = 6, 7, 8, ... , (see Ref. 12). Note that n = 6 
corresponds to dispersion and induction interaction forces 
of the dipole–induced dipole type and n = 8, 10, ... to 
the interactions of higher orders like the dipole–induced 
quadrupole, etc.  

Then, it is necessary to determine the dependence of 
the distance between the centers of masses of colliding 
molecules on time and to calculate the integral in 
Eq. (1).  
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The intermolecular potential involves the isotropic 
and anisotropic components, but since the half–width and 
the line shift are formed by a large number of collisions 
for determining r(t, b, υ) let us use some effective 
isotropic potential. The solution of motion equations for 
the isotropic potential is well known (see, e.g., Ref. 13):  

 

t = 
⌡
⌠

r
c

r

 
dr′

2[E – U(r′)]/μ – M2/μ2r′2
 + c

1
 ; (2) 

 

ϕ = 
⌡
⌠

r
c

r

 dr′ 
M/μr′2

2[E – U(r′)]/μ – M2/μ2r′2
 + c

2
 , (2a) 

 

where E = μυ2/2, M = μbυ, 1/μ = 1/m
1
 + 1/m

2
 are the 

energy, momentum, and reduced mass, respectively, and 
U(r) is the molecular interaction potential. Since in the 
case of an isotropic potential the trajectory is plane, it is 
defined by two functions: Eq. (2) defines r as an implicit 
function of t, and Eq. (2a) describes the relationship of r 
and the polar angle ϕ. To calculate the integral in Eq. (1) 
the following coordinate system and initial conditions are 
chosen: the plane, where collisions take place is the plane 
(xy), at t = – ∞ the coordinate y is infinite, i.e., y = ∞ and 
ϕ = 0, the instant t = 0 corresponds to the distance of the 
closest approach r

c
. As a result  

 

c
1
 =

 
0 

c
2
 = – 

⌡
⌠

rc

∞

 dr′
M/μr′2

2[E – U(r′)]/μ – M2/μ2r′2
 .  

 

Let us designate  
 

Φn = 
1

�
 ⌡⌠
– ∞

∞

 
dt

r(t, b, υ)n  (3) 

 

and using Eqs. (2) and (2a) replace the integration variable 
by r. This gives  
 

Φn = 
2

�
 
⌡
⌠

r
c

∞

 
dr′

r′n 2[E – U(r′)]/μ – M2/μ2r′2
 . (4) 

 

The parameter r
c
 is determined from the equation13  

 

2[E – U(r
c
)]/μ – M2/μ2r2

c
 = 0 

 

or  
 

(b/r
c
)2 = 1 – V(r

c
) , (5) 

 

where V(r) = 2U(r)/μυ2.  
By making change of variables in Eq. (4)  

 

y = (r/r
c
)2 , (6) 

 

and using relation (5) to transform the integral, we obtain  
 
Φn = An(∞)/ υ rn

c
–1 ; 

 

An(x) = 

⌡⎮
⌠

1

x
2

 
dy

yn/2 y – 1 + V(r
c
) – yV( yrc)

 . (7) 

 
After the change of variables according to Eq. (6), the 

limits of integration become independent of r
c
 and the 

integrand does not contain the impact parameter explicitly.  
Generally speaking, the solution of dynamic equations 

(Eqs. (2) and (2a)) contains not only infinite but also the 
finite trajectories that correspond to the bound or 
metastable states of the colliding molecules. The "effective 
potential" is presented in Fig. 1, in which the classically 
permissible regions of motion for the collisions of three 
types are shown as well. Let us note that Eq. (5) that 
determines the turning points can have one, two, or three 
solutions depending on the b and υ relation .  

 

 
 

FIG. 1. Intermolecular potential U(r), the effective 
potential U

eff
(r) = U(r) + M2/2μr2, turning points r

c1
, r

c2
, 

and r
c3
 for the collisions of three types. The infinite 

(r
c
 ≤ r ≤ ∞) and finite (r

c1
 ≤ r < r

c2
) trajectory correspond to 

the energy E
1
. The infinite trajectory (r

c4
 ≤ r < ∞) and the 

region of metastable state (r
c3
 ≤ r ≤ r

c4
) correspond to the 

energy E
2
. A single infinite trajectory corresponds to the 

energy E
3
. 

 

The bound and metastable states correspond to 
variation of r in some finite region (from r

c1
 to r

c2
). As is 

well known, strong collisions and, moreover, the collisions 
producing a bound pair of molecules interrupt the 
absorption process and do not contribute to the line shift. 
Therefore it is necessary to exclude such trajectories from 
calculations that can be done by using in Eqs. (5), (6), and 
(7) the largest value of r

c
. Thus it is implied that the 

integration in Eq. (7) is performed from the largest value of 
r
c
 determined by Eq. (5) up to r = ∞, what corresponds to y 

varying from 1 to ∞. Moreover, the radicand in Eq. (7) 
determining the classically permissible region of motion 
must be nonnegative for all values of y. The integration 
over the region chosen in such a way, automatically 
accounts only for contributions from interactions of 
molecules moving along infinite trajectories into the line 
shift. Recall that at the turning point the radicand (in 
Eq. (7)) vanishes but, as it can easily be seen, the integral 
converges both on the upper and lower limits.  
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Equation (7) completely takes into account the effect 
of trajectory bending and it is easily calculated for any 
model or numerically set potential. The right–hand side of 
Eq. (7) contains the reduced interaction potential V and 
may be represented as a universal function of the 
intermolecular parameters. Equation (7) has been derived 
using exact solutions of the dynamic equations, what 
essentially differs it from the results obtained based on 
model approaches.14–17 For these reasons, Eq. (7) may be 
used for determining the applicability limits of approximate 
methods being used to account for bending, as well as for 
obtaining new approximate values or estimates of the 
integral Φn values.  

 

3. CALCULATIONS OF Φ
n
 VALUES AND OF THE 

TRAJECTORY MODELS  
 

In Refs. 14–17 different models have been proposed 
which allow one to calculate more accurately the 
broadening coefficients in the case of "weak collisions". In 
these models, first, some type of a trajectory is assumed to 
be valid and then it is used to correct the integral value in 
Eq. (1). It can be shown that all these models result from 
some evident approaches used when calculating integral (7). 
For this purpose it is necessary to expand the radicand 

entering into Eq. (7) (i.e., the function yV(r
c

y) into the 

Taylor series in the vicinity of the point y = 1 and then 
take the first few terms.  

The use of series expansion is justified by the presence 

of the factor y–n/2 in the integrand of Eq. (7) which "cuts" 
the intermolecular potential on the trajectory portions far 
from the point y = 1, and, it can be stated that the 
intermolecular interaction potential is mainly formed within 
certain vicinity of a turning point and the behavior of this 
potential at large y values can be neglected. In this case the 
common assumption that the line center shift is formed due 
to interactions with far–flying broadening particle is used, 
while the collisions with impact parameter smaller them b

0
 

are assumed to be inefficient in forming the shift .10,11 

a) By taking U(r) = 0 in Eqs. (5) and (7), we obtain:  
 

Φn=
1

�υbn–1
 

⌡
⌠

1

∞

 
dy

yn(y – 1)
=

π

�ubn–1
 
Γ((n + 1)/2)

Γ(n/2+ 1)
=an/�υbn–1(8) 

 

in a straight line trajectory approximation, where Γ(x) is the 
gamma–function.  

This approximation was used in Refs. 1, 4, 5, 7, and 18 
for calculations of H

2
O rovibrational line shifts. It gives good 

results in the case of "strong collisions" when the long–range 
acting anisotropic component of the intermolecular interaction 

potential interrupts the absorption process when b
0
 � r

c
. In 

the near–IR and visible spectral regions the most strong 
rotational transitions are observed for small values of J (from 
1 to 5). However, in the H

2
O 6.3 μm absorption band the 

broadening and shift coefficients were measured for the lines 
with J equal to 15–19 (Ref. 20). The shapes of these lines are 
formed by "weak collisions" and therefore it is necessary to 
analyze the applicability of the straight line trajectory 
approximation.  

b) As the next approximation, let us take  

U(r
c

y) g U(r
c
) in Eq. (7) and take into account the similar 

term in Eq. (5). Then we obtain:  
 

Φn = an/�υ
c 
r
n

c

–1
 ,  υ

c
 = υ 1 – V(r

c
) = bυ/r

c
 . (9) 

 

After the same transformations in Eqs. (2) and (2a) one 
can see that a real trajectory is replaced by some effective 
rectilinear one with the impact parameter rc and the constant 

velocity υ
c
 which corresponds to the Herman–Tipping 

model.14 In Ref. 15 it was pointed out that in this model there 
is a physically doubtful point associated with the fact that for 
small impact parameters the relative velocity is small and at 
b = 0 the effective velocity υ

c vanishes. This approximation 

was used for calculating the line broadening coefficients of 
dipole molecules in the atmosphere of inert gases.14  

c) To obtain the next approximation (which corresponds 
to the Robert–Bonamy16 model) let us take into account the 
first term of the intermolecular interaction potential expansion 
into the Taylor series in the vicinity of the point y = 1. In this 
case we have  

 
An(∞)

 
= {1 – V(rc) – rcV′(rc)/2}–1/2an . (10) 

or 

Φn

 
= an/�υ′

c
 rn

c

–1
 ,  υ′

c
 = υ{1 – V(r

c
) – r

c
V′(r

c
)/2}1/2 . (11) 

 
Using this same approximation in Eqs. (2) and (2a) it 

can be shown that in Robert–Bonamy model a real trajectory 
is replaced by a rectilinear one with the impact parameter r

c
 

and constant velocity υ'
c
.  

The Robert–Bonamy model gives quite realistic values of 
mean effective velocity for collisions with small impact 
parameters. As can be seen from Eq. (11) υ′ ≠ 0 at b = 0 and 
has some finite value. This model was used in calculations of 
the half-widths of carbon dioxide, water vapor, and ozone.  

More accurate expressions for An(∞) (in particular, for a 

parabolic trajectory model) are obtained by taking into 
account higher order terms of the intermolecular interaction 
potential expansion into Taylor series.  

 
4. CALCULATION OF A

6
(∞) FOR THE LENNARD–

JONES POTENTIAL 
 
The calculations of water vapor line broadening 

coefficients for the cases of nitrogen, oxygen, and air as 
broadening gases performed in Ref. 9, have shown that in the 
case of the line shape formation by "weak collisions" it is 
necessary to take into account both the short–range acting 
component of the potential and the trajectory bending. 
Moreover, it was found that the Robert–Bonamy "effective 
rectilinear trajectory" model gives quite satisfactory results. 
To calculate the line shift coefficients it is necessary not only 
to determine the values of corrections for the trajectory 
bendings, but also to verify the applicability of the used 
models. The simplest way to do such estimations is the direct 
calculation of integral (7).  

To determine An(∞) we shall use the Lennard–Jones 

potential  
 

U(r) = 4ε[(σ/r)12 – (σ/r)6] , (12) 
 

where σ and ε are parameters of the potential (σ 
approximatively corresponds to the radius of action of 
repulsive forces, and ε is equal to the depth of the potential 
well). For potential (12) An(∞) takes the form  

 

AL
n
J(∞) = 

⌡
⌠

1

∞

 
dy

yn/2 y – 1 + λ[β12(1 – y–5) – β6(1 – y–2)]
,(13) 
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where λ = 8 ε/μυ2 and β = σ/r
c
 are the dimensionless 

interaction parameters.  
Function (13) may be considered as some universal 

function independent of the parameters of the 
intermolecular potential and of the initial conditions of a 
collision and which contains the reduced quantities λ and β. 
If the values of this function are precomputed that allows 
one to avoid calculations of integral (13) on each step of 
integration over the impact parameter and relative velocity 
when calculating the line shifts for a given pair of 
molecules.  

The classically permissible region depends on λ and β 
and gives the definition region of A

6
(∞) as a function of λ 

and β. The latter is determined by the inequalities  
 

y – 1 + λ[β12(1 – y–5) – β6(1 – y–2)] ≥ 0 ,  1 ≤ y ≤ ∞ . (14) 
 
For the given initial velocity (i.e., when λ is fixed) the 
parameter β must satisfy Eq. (14) for any y (1 ≤ y < ∞), 
which, according to the accepted assumptions, corresponds to 
the motion from the infinity to the turning point (the 
trajectory is symmetric with respect to the vector r

c
). If this 

inequality holds then one can be sure that there is an infinite 
trajectory, corresponding to the given impact parameter b, 
velocity υ, and the parameters λ and β. The absence of β 
satisfying inequality (14) shows the disagreement of λ and β 
with the initial conditions according to which the trajectory is 
characterized by four parameters b, υ, ε, and σ and arbitrary λ 
and β in Eq. (13) can disagree with these parameters. Hence, 
inequality (14), determining the classically permissible region 
for the infinite trajectories, only imposes some limitations on λ 
and β.  

As an example, let us give the definition region of the 
Φ

6
 function: at λ < 2.6767 this function exists for any β, for 

other values of λ and for any y > 1 the values of β must 
satisfy two conditions:  
 

β 
6 > 

y2

2(y4 + y3 + y2 + y + 1)
 × 

 

× ⎣
⎡

⎦
⎤ y(y + 1) + 

λy2(y + 1)2 – 4y(y4 + y3 + y2 + y + 1)
λ

 ;  

  (15) 

β 
6 < 

y2

2(y4 + y3 + y2 + y + 1)
 × 

  

× ⎣
⎡

⎦
⎤y(y + 1) – 

λy2(y + 1)2 – 4y(y4 + y3 + y2 + y + 1)
λ

 . 

 
It can easily be seen, that these conditions must be 

satisfied for minimum and maximum values of the right–
hand sides of the inequality and for small λ the right–hand 
sides of inequalities have complex values. In this case the 
definition region β is β ≥ 0. Note that if inequality (15) is 
valid only for y from some interval that means that the 
motion occurs in some finite region, what corresponds to 
bound or metastable states.  

To estimate the effect of trajectory bending on the line 
shifts integral (13) was calculated numerically for 
0.1 ≤ λ ≤ 10. The dependences of A

6
(∞) on β for λ = 0.2, 

1.0, 2.6, and 6 is shown in Fig. 2. 
In the Robert–Bonamy approximation17 we have  

 

A
6
(∞) = a

6
/ 1 + λ β 

6(5β 
6 – 2) . (16) 

 

 
 

FIG.
 
2. Dependence of A

6
(∞) on β = σ/r

c
 and λ = 8ε/πυ2 

(σ and ε are parameters of the Lennard–Jones potential, 
r
c
 is the distance of the closest approach, υ is the velocity, 

and μ is the reduced mass of a molecule). The trajectory 
portion A corresponds to distant flights of molecules, B to 
collisions occurring at distances approximatively equal to 
σ, and C  to the head–on collisions. 
 

 
 
FIG. 3. The A

6
(∞) calculated in accordance with the 

approximate (dashed curves) and exact (solid curves) 
formulas.  
 

A comparison of A
6
(∞) calculated using the Robert–

Bonamy approximation with the results of exact  
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calculations shows, that a relation similar to Eq. (16) can 
be a convenient approximation of integral (13).  

In our studies we revealed that the equation  
 

AL
6
J(∞) = a

6
/ 1 + λ(β – β

0
)6[5(β – β

0
)6 – 2] (17) 

 
with β

0
 = 0.042 gives an approximation accurate to 

several percent for λ varying from 0.2 to 10. Similar 
approximations can also be obtained for other values of n. 
The dependences of A

6
(∞) on β obtained using 

approximate formula (17) and exact relation (13) are 
shown in Fig. 3. It should be noted that good agreement 
(within 1 % accuracy) occurs between the values Φ

6
 

calculated by the exact and approximate (Eq. (17)) 

formulas what allows one to use quite a simple 
approximation to calculate the shift coefficients of the 
absorption spectral lines. 
 

 
 

FIG. 4. The dependence of β = σ/r
c
 on the parameter b/σ.  

 
The dependence of the impact parameter b on β 

(and, hence, on r
c
) is shown in Fig. 4. From Figs. 2–4 it 

follows that small values of β correspond to large 

distances ((b � σ) when r
c
 g b (see Eq. (5)) between 

interacting molecules, each molecule flying along its own 
trajectory. In this case, as it could be expected, the 
corrections are small and the straight line trajectory 
approximation is applicable, ALJ

6
 (∞) = 3π/8 (the section 

A of the curve in Fig. 2).  
Figure 3 shows that for the impact parameters 

approximately corresponding to the radius of attractive 
forces action (β = 0.75) r

c
 is smaller than b. In this case 

the trajectory is determined by the attractive potential 
and its bending leads to an increase of the interaction 
time and to the Φ

6
 growth (interval B in Fig. 2). In this 

case the corrections depend on the ε to kinetic energy 
ratio.  Thus for small energies the parameter λ takes large 
values and the values of A

6
(∞) can increase several times. 

For collisions occurring at large initial velocities the 
parameter λ is small and the corrections are not large. 
Thus one can draw a conclusion, that at high 
temperatures, when the fraction of rapid molecules is 
large, the trajectory bending may be neglected. At the 
same time at low temperatures the effect of trajectory 
bending must be taken into account.  

The values β � 1 correspond to molecular collisions 

occurring at short distances (the impact parameters 
(b < σ)). In this case the interaction time corresponds to 
the time of molecule travel to the turning point whose 
position is determined by the repulsive forces. Small  

values of r
c
 and the velocities of the relative motion of 

molecules exceeding the average one correspond to large 
values of β. In this case the time of the interaction 
between molecules decreases and contributions from such 
a type of collisions (i.e., when b < σ and υ > υ

av
) to the 

line shift are small and, as a consequence, Φ
6
 vanishes.  

 
5. ESTIMATIONS OF THE TRAJECTORY BENDING  

EFFECT ON THE LINE SHIFTS  
 
The dependences of β5A

6
(∞) on the impact parameter 

calculated using several models and the exact formula are 
shown in Fig. 5. For large impact parameters the 
calculations made using a simple model of a straight line 
trajectory give the results, which, as it could be 
anticipated, well agree with the results obtained using 
any other model. For the impact parameters near 1.8 σ 
the results of calculations by the exact formula differ 
from those obtained using the calculation of model 
trajectories. When b g σ the calculations performed using 
all the model trajectories give wrong results. As was 
pointed out above, the Herman–Tipping model 
underestimates velocity of the relative motion along the 
trajectory in the vicinity of the turning point, what, in 
turn, gives overestimation of the molecular interaction 
time. As a result, the values of Φ

6
 for this model exceed 

the actual ones by several times. The results of 
calculations by the Robert–Bonamy model qualitatively 
agree with the results of calculations by exact formula 
but at small values of the impact parameter the difference 
reaches 20 %.  

 

 
 

FIG. 5. The dependence of β5A
6
(∞) ∼ S

1
(b) on the impact 

parameter calculated using exact formula (13) (squares) 
and models: triangles is the Robert–Bonnamy model, 
circles is the Herman–Tipping model, crosses is the 
straight line trajectory model. Dashed lines show the 
values of b

0
 for j

2 
= 11 and 13 for the line 7

62
 → 6

61
 of 

H
2
O perpendicular band broadened by nitrogen pressure. 

 
Dashed curve in Fig. 5 corresponds to the values of 

cut off parameter b
0
 for the line of the transition 7

62
–6

61 

with
 

j = 11 and 13 from the water vapor molecule 
perpendicular absorption band broadened by collisions  
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with nitrogen molecules. The half–width of this line is formed 
by "weak collisions" and "the interruption does not succeed" 
to remove the effect of trajectory bending. In this case the 
calculations that use model trajectories can give large errors.  

The values of A
6
(∞) calculated for different pairs of 

molecules by formula (17) are given in Table II. As the initial 
parameters the average velocity of relative motion of molecules 
and impact parameter b

0
 from Anderson theory determined in  

the exact resonance approximation (the resonance parameter k 
for virtual transitions in S

2
(b) is equal to zero) were used. The 

Φ
6
 value in this case is presented as a correction to the line 

shift calculated by the ATCF technique. The values of 
multipole moments of water–vapor, methane, and other 
molecules, the Lennard–Jones potential parameters were taken 
from the literature, the calculations were carried out for room 
temperature. 
 

TABLE II. Corrections to the line shifts for the trajectory bending. 
 

Molecules ε, K s, A b
0
, A λ β Correction (%)

H
2
O–H

2
O 92.20 3.23 11.38 0.98 0.28 0      0 

–SO
2
 152.43 3.76 11.79 1.62 0.32 0      0 

–N
2
 93.61 3.46 4.70 0.99 0.80 +10   +12 

–CO
2
 132.01 3.86 6.70 1.40 0.57 + 4   + 3 

–O
2
 104.31 3.35 3.05 1.11 1.01 –42  –42 

–He 30.70 2.89 2.05 0.33 1.10 –44  –45 
–Ne 56.73 3.01 2.59 0.60 1.04 –40  –40 
–Ar 105.10 3.32 3.44 1.11 0.99 –35  –34 
–Kr 125.56 3.42 3.78 1.33 0.97 –32  –30 
–Xe 142.75 3.67 4.16 1.51 0.95 –26  –23 

CH
4
–He 38.92 3.19 1.86 0.41 1.12 –52  –52 

–Ne 72.00 3.30 2.35 0.77 1.06 –49  –50 
–Ar 133.25 3.61 3.09 1.41 1.02 –49  –50 
–Kr 159.19 3.71 3.37 1.69 1.01 –49  –50 
–Xe 180.98 3.96 3.68 1.92 1.01 –51  –52 

 

Note:  in column 7 there is the correction equal to (Φ
6
/Φ

str

6
 – 1)⋅100, where Φ

6
 is the result obtained by formula 

(13), and Φstr
6

 is the same quantity in the straight line trajectory approximation; in column 8 the quantity Φ
6
 was 

calculated using Eq. (17). 
 

The analysis of data presented in Table II shows that 
the effect of trajectory bending on the first–order term 
may be neglected in the case of "strong collisions" (for 
example, for H

2
O–H

2
O and H

2
O–SO

2
 collisions). 

Actually, for the "strong" dipole–dipole interaction the 
collisions forming the line shift have the impact 
parameter b > b

0
 and Anderson's cut off parameter b

0
 is 

much greater than σ. The water vapor line shifts may 
vary within the limits 3–12 % for the collisions with 

nonpolar molecules which have large quadrupole moments 
(e.g., N

2
 and CO

2
). For the collisions with atoms of light 

inert gases (He, Ne, and Ar) or with molecules having 
small quadrupole moments (O

2
), the corrections are found 

to be significant both in the case of methane and water 
vapor molecules. In these cases the parameter b

0
 is 

determined by short–range forces (the polarization and 
repulsion potentials) and is smaller than σ. As a 
consequence, the line shifts decrease. For heavy atoms the 
basic interactions determining b

0
 are the induction and 

dispersion interactions and, moreover, the interruption in 
this case takes place at the impact parameter values 
exceeding σ. This means that in this case the trajectory 
bending plays less essential role in the formation of line 
shifts.  

The methane molecule has neither dipole nor 
quadrupole moments and therefore the interaction forming 
the half-width are weak, the parameter b

0
 is small, and 

the trajectory bending becomes an important factor of 
formation of the line shifts and should be taken into 
account in calculations.  

 

 

REFERENCES 
 
1. A.D. Bykov, E.A. Korotchenko, Yu.S. Makushin, et al., 
Opt. Atm. 1, No. 1, 40–45 (1988). 
2. B.E. Grossman and E.V. Browell, J. Mol. Spectrosc. 136, 
264 (1989). 
3. B.E. Grossman and E.V. Browell, J. Mol. Spectrosc. 138, 
562 (1989). 
4. B.E. Grossman, E.V. Browell, A.D. Bykov et al., Opt. 
Atm. 3, No. 7, 617–630 (1990). 
5. E.A. Korotchenko, V.V. Lasarev, Yu.N. Ponomarev, and 
B.A. Tikhomirov, Opt. Atm. 3, No. 11, 1076–1080 (1990). 
6. N.F. Borisova, E.S. Bukova, V.M. Osipov, and V.V. 
Tsukanov, Opt. Atm. 4, No. 1, 49–54 (1991). 
7. A.D. Bykov, E.A. Korotchenko, Yu.S. Makushin, et al., 
"Measurements and calculations of the water vapor 
absorption line center shifts caused by air pressure in the 
near–IR and visible regions," Preprint No. 20, Institute of 
Atmospheric Optics, Siberian Branch of the Russian Academy 
of Sciences, Tomsk, 1987, 42 pp. 
8. A. Barbe S. Bouazza, and J.J. Plateaux, Appl. Opt. 30, 
2431 (1991). 
9. J. Bonamy, L. Bonamy, and D. Robert, J. Chem. Phys. 
V. 67, 4441 (1977). 
10. C.J. Tsao and B. Curnutte, J. Quant. Spectrosc. Rad. 
Transfer 2, 41 (1962). 
11. B.S. Frost, J. Phys. B: Atom. Mol. Phys. 9, 1001 (1976). 
12. I.G. Kaplan, Introduction into the Theory of 
Intermolecular Interactions (Nauka, Moscow, 1982). 
13. L.D. Landau and E.M. Lifshits, A Course of Theoretical 
Physics, V. 1, Mechanics, 3rd ed. [Pergamon Press, Onford, 
1976]. 
 



594   Atmos. Oceanic Opt.  /September  1992/  Vol. 5,  No. 9 A.D. Bykov et al. 
 

 

14. R.H. Tipping and R.M. Herman, J. Quant. Spectrosc. 
Rad. Transfer 10, 881 (1970). 
15. M. Berard and P. Lallemand, ibid. 19, 387 (1978). 
16. D. Robert and J. Bonamy, J. de Phys. 40, 923 
(1976). 
17. J.L. Gersten, Phys. Rev. A4, 98 (1971). 
 

18. G. Buffa and O. Tarrini, J. Mol. Spectrosc. 101, 271 
(1983). 
19. C. Boulet, D. Robert, and L. Galatry, J. Chem. Phys. 
65, 5302 (1976).  
20. R.S. Eng, P.L. Kelley, A. Mooradian, A.R. Calawa, 
and T.C. Harman, Chem. Phys. Lett. 19, 524 (1973).  
 
 

 


