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Experimental data of some authors on the absorption coefficient of carbon 
dioxide in the cases of self–broadening and broadening by nitrogen of its spectral 
lines in the transmission microwindows and beyond the head of the 4.3 µm absorption 
band for temperature of 193 to 771 K and for pressure from the standard atmospheric 
to 60 Amagat are analyzed from the standpoint of the line wing theory. It is shown 
that the whole data set can be quite accurately described within the framework of this 
theory with the account for temperature behavior of the intermolecular interaction 
potential. Advantages and drawbacks of other theoretical approaches to description of 
spectral line wings are briefly discussed. 

 

Recent experimental studies of the absorption 
coefficient within the 4.3 μm CO

2
 band and beyond its 

head1�6 provide a valuable information for theoretical 
analysis of mechanisms of forming the spectral line contour 
at different temperatures and pressures. We think that the 
absorption coefficient in the line wings is a sum of the 
absorption coefficients of individual lines with spectral and 
temperature behavior determined by the intermolecular 
interaction at a negligible effect of line mixing. 
Mathematical arguments in favour of this point of view 
have been discussed in a number of papers, see, for example, 
Refs. 7–10. 

In this paper we will try to determine the place of our 
approach which we call the spectral line wing theory and 
the place of line mixing approaches in the general theory of 
line shape and the calculational results on the absorption 
coefficient within the 4.3 μm CO

2
 band for gas mixtures 

CO
2
–N

2
 and CO

2
–CO

2
 at temperatures 193–771 K and 

pressures of 1–40 atm that corresponds to the conditions of 
measurements in Refs. 1–6. 

In the problem on line shape two asymptotic cases, 
i.e., small frequency shifts (line center) and large frequency 
shifts (line wing), can naturally be separated out. The line 
center is described, in the absence of line mixing, by the 
Lorentz line shape. The line wing, in our opinion, is 
described by the line shape obtained in the line wing 

theory7�10 (see also Ref. 11). Theoretical studies of the line 
shape normally use two approaches, i.e., the kinetic 
equation method and Fano′s resolvent method. The 
asymptotic cases mentioned above appear quite naturally in 
both these approaches, as it is shown below. 

Let us introduce necessary designations. The below 
description of the spectral line shape uses the well–known 
expression 
 

F(ω) = π–1 Re ⌡⌠
0

∞

 exp(iω t) Φ(t) dt , (1) 

 

where the correlation function of the dipole moment (x is 
the dipole moment operator) 
 

Φ(t) = Tr x exp[(t/i�)H] ρ exp[ – (t/i�)H] , (2) 

 
H is the Hamiltonian of the system under study 
 

H = H
1
 + H

2
 + H

3
 + U = H(0) + U , (3) 

 

ρ = Z–1 e–H/kT , (4) 
 

H
1
(ξ

1
) is the Hamiltonian of a light absorbing molecule 

(dynamic subsystem), H
2
(ξ

2
) is the Hamiltonian of 

intramolecular motions of buffer gas molecules; H
3
(ξ

3
) is 

the operator of the kinetic energy of the molecular centers 
of mass (H

2
 + H

3
 is a dissipative subsystem), and 

U(ξ
1
, ξ

2
, ξ

3
) is the intermolecular interaction potential 

(interaction between the dynamic and dissipative 
subsystems). Hereinafter S(t) = e(t/i)H is the evolution 
operator and the operation Tr

2
Tr

3
 from Tr in Eq. (2) can be 

treated as averaging over collisions. 
Kinetic equation. The kinetic equation in the line shape 

theory is the equation whose solution is the operator Q(t) 
 
Q(t) = Tr

2
 Tr

3
 SρxS–1(t)

 
, (5) 

F(ω) = π–1 Re Tr
1
 x Q(ω) ,  Q(ω) = ⌡⌠

0

∞

 dt eixt Q(t) . (6) 

Kinetic equation is written as follows 
 

– ρ
1
x – iω Q(ω) = (i�)–1 L

∧
1
 Q(ω) + Γ

∧
(ω) Q(ω) , (7) 

where Γ
∧
(ω) is the so–called relaxation operator.

 
 

It can be shown7–10 that the right–hand side of the 
kinetic equation for spectral components of the matrix 
elements Qnm takes the form of the sum of two terms 

 
i(ω – ωnm) Qnm + xnm ρnm = Ynm + (ω – ωnm)2 Znm , (8) 

 
where  
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Ynm = 
⌡
⌠

0

∞

 d t eiωt 
⎝
⎛

⎠
⎞Tr

2
 C [ ]∂U

∂t , ρ
2
 Q  C 

–1

av

 , (9) 

 

Znm = ⌡⌠
0

∞

 d t eiωt (Tr
2
Cρ

2
 QC 

–1)
av

 . (10) 

 

Operator C after passing to a semiclassical representation 
obeys the equation  
 

i� 
∂C
∂t  = (H

1
(ξ

1
) + H

2
(ξ

2
) + U(ξ

1
, ξ

2
, R(t)) C , (11) 

 

where R(t) is the classical trajectory of a molecular center 
of mass motion. 

Two terms of the right–hand side of Eq. (8) describe 
the line shape in alternative asymptotics.7,11 The equation, 
containing only the first term in the right–hand side, yields 
the Lorentz line shape. The equation containing only the 
second term (ω – ωnm)2Znm'

 in the right–hand side 

corresponding to the large frequency displacement 
asymptotics in the absence of the line mixing yields the 
expression for the absorption coefficient of an individual 
line conventional for the line wing theory 
 

F(ω) ∼ Δω–1–3/a 
1
R′ ⌡
⌠

0

R′

 R e–V(R)/kTdR

R′2 – R2
 . (12) 

 

The value R′ in Eq. (12) is the root of equation 
corresponding to the law of energy conservation for 
absorption  
 
ΔE(R)= Δω , (13) 
 
and V(R) is the so–called "classical intermolecular 
interaction potential" connected to U(ξ

1
, ξ

2
, R(t)) by the 

relation 
 
V(R) = Tr

1
 Tr

2
 C 

–1ρ
1
ρ

2
CU . (14) 

 
Fano's resolvent. When Q(t) in Eq. (6) is written in 

terms of the superoperator L̂ 
 

L
∧
y= [H, y]  (15) 

 

(L
∧
 = L

∧
1
 + L

∧
2
 + L

∧
3
 + L

∧
′ = L

∧
(0) + L

∧
′ what corresponds to 

partitioning (3) of H), the possibility appears of taking the 
integral over t in the explicit form  
 

F(ω) = – π–1 Im Tr x 
1

ω – L
∧ ρx , (16) 

 

and the resolvent operator can be related to the operator M
∧

(ω) which obeys the equation  
 

M
∧

(ω) = L
∧

′/� + (L
∧

′/�) (ω – L
∧

(0)/�)–1 M
∧

(ω) . (17) 

 

Solution of Eq. (17) can be written in terms of the amplitudes 
of a transition T between quantum states obeying Lippmann–

Schwinger equation (M
∧

 = N
∧
 <m>) 

m
∧
(ω) = [T (ω + H(0) – T*(H(0) – ω)] + (2πi)–1 × 

 

× 
⌡
⌠

–∞+iη

∞+iη

 dz ( )1

z – H(0) – 
1

z – ω – H(0)*  T(z) T*(z – ω) ×  

 

× ( )1

z – H(0) – 
1

z – ω – H(0)  . (18) 

 

Representation of M
∧

 in terms of the scattering matrix 
(the first term of Eq. (18)) is typical of many equations 
written especially for studying resonant interactions, i.e., 
for the line center. As to the second term of Eq. (18), as 
far as we know, it has not been used in calculations. It 
can be shown that only small intermolecular distances are 
essential for its evaluation where intermolecular 
interactions are strong and therefore it should be 
important for the line periphery. Thus, in Fano's method 
the division into two asymptotic cases is in fact also 
assumed. 

It should be noted that two approaches, i.e., the 
kinetic equations and Fano's resolvent turned out to be 
intrinsically interconnected (generally speaking, it is 
quite natural because both these approaches are aimed at 
the solution of one and the same physical problem), 

namely, the operator M
∧

c
 in the resolvent method 

 

< M
∧

c
 > = < M

∧
 > 

⎝
⎜
⎛

⎠
⎟
⎞1 – 

⎝
⎜
⎛

⎠
⎟
⎞ω – 

1

�
 L
∧

1

–1

 <M
∧

> 
–1

 (19) 

 
is in fact the relaxation operator from the kinetic equation  
 

< M
∧

c
 > = iΓ

∧
(ω) . (20) 

 
Thus, there are two asymptotic cases in the line 

shape theory appearing as a result of definite 
mathematical approximations. They also imply different 
physical pictures of interaction of light with the 
molecular systems (see, for example, Refs. 7 and 12). We 
only note here that the presence in Eq. (8) of two, in a 
certain sense, alternative terms means, in fact, that the 
matrix elements of the relaxation operator or, what is the 
same because of Eq. (20), the resolvent operator are also 
the sum of two terms each prevailing in certain 
asymptotic cases. This situation is schematically 
illustrated in Fig. 1. 

If the second term in the right–hand side of Eq. (8) 
or the integral term in Eq. (18) are neglected we shall 
deal only with the relaxation operator, i.e., with the 
asymptotic case of the line center. If, in this term, one 
makes a limiting transition to large Δω neglecting the 
factor exp( – V/kT) one obtains the well–known 
statistical line shape, see Ref. 10. However, it may have 
nothing to do with the real line wing as it can be seen 
from the scheme in Fig. 1. It is also clear that if one 
deals with this term only even if the diagonal and off–
diagonal matrix elements of the resolvent operator are of 
the same order of magnitude or if one takes into account 
the finite duration of collisions or makes the calculations 
of matrix elements more precise, etc. all that may tell 
nothing about the decisive role of the line mixing in the 
wing formation because it may have nothing to do with 
the real line wing at corresponding frequency shifts. 
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FIG. 1. Schematic picture of spectral behavior of matrix 
elements of the relaxation matrix. 1) Line center 
asymptotics, 2) line wing asymptotics, and 3) statistical 
line shape. 
 

On the spectral line mixing. We think that the papers 
devoted to the study of line mixing by means of the 
resolvent method (see, for example, Refs. 4, 13–16) are not 
beyond the scope of the line center asymptotics and 
therefore have only a limited applicability, i.e., not very far 
from the center, where the line wing asymptotics is not yet 
dominating. Indeed, in order to use the analytical 
perturbation theory (see, for example, Ref. 19), as it was 
done in Refs. 4 and 16, the frequency at which the 
absorption occurs has to be beyond the half–width of a line 
at frequency ωj contributing to the absorption at the 

frequency ω and there should be no absorption lines within 
the limits of the frequency shift Δω = ⏐ω – ωj⏐. These 

conditions are evidently violated at frequencies beyond the 
band head, but, generally speaking, may be satisfied at 
frequencies in microwindows under not very high pressures. 
However, even in the case of microwindows the frequency 
shifts are already so large (Δω ≥ 5α for the 4.3 μm band) 
that they in fact are within the region of the wing 
asymptotics. This means that the matrix elements of the 
relaxation operator determined within the framework of the 
line center asymptotics (Γnm(Δω) ∼ const), cannot be used 

here and their frequency dependence must be taken into 
account. 

The other series of papers13–15 is the generalization of 
the approach proposed in Ref. 20, i.e., when the far line 
wing is studied based on the ideas resulting in the statistical 
line shape, see Ref. 10, in other words within the line 
center asymptotics, which is applicable only for not very 
large frequency shifts. Therefore the importance of the line 
mixing being underlined in these studies is valid just within 
this frequency region. Evaluation of the role of line mixing 
in the far–wing formation has to proceed from the line wing 
asymptotics. The role of line mixing in the formation of the 
far line wing is defined by other criteria and, as is shown in 
Ref. 7, it is inessential. 

As follows from the literature the calculations made 
with the line mixing effects taken into account confirm all 
the above said. Thus, the results obtained using the line 
mixing approach are quite satisfactory for the microwindows 
at room temperature,4,16 whereas the results for frequency 
shifts beyond the 4.3 μm CO

2
 absorption band head can 

hardly be considered successful (see, for example, Ref. 17), to 
say nothing about the temperature behavior of the absorption 
which is not described by line mixing theories. Moreover, even 
for the regions in which the agreement between calculations 
and experiment is reasonable, the evaluation of the line mixing 
effect may necessitate additional studies because in these cases 
both contributions may be comparable. 

Results of calculations. Let us now consider the 
situations when the absorption coefficient is defined by 
the line–wing asymptotics and is described by the line 
wing theory. These are, first of all, the data concerning 
the region beyond the band head of the 4.3 μm CO

2
 band. 

Remind that the line–wing asymptotics is described 
by Eq. (12), where R' is the root of Eq. (13). The 
quantity ΔE(R) in Eq. (13) is the difference of quantum 
interaction energies of the molecular states between which 
the transition under study occurs. We approximate this 
difference with a set of monomials with the inverse power 
dependence on the distance between molecules 
 
Δω = (Ca/R)a , (21) 

 
so that each of them corresponds to some interval of 
frequency shifts. The corresponding piecewise 
approximations for CO

2
–CO

2
 and CO

2
–N

2
 mixtures are 

shown in Fig. 2. 
 

 
 
FIG. 2. Approximations of quantum interaction potential 
ΔE ∼ Δω = (C/R)a used in calculations. 
 

The so–called "classical intermolecular interaction 
potential" (Eq. (14)) is approximated by Lennard––Jones 
potential with the parameters taken from thermodynamic 
measurements at room temperature. It is this potential 
that determines, to a considerable degree, the spectral 
behavior of the absorption coefficient resulting in the 
exponential fall off in the region of wing. It also leads to 
a nontrivial temperature dependence of the absorption 
coefficient, because V(R) depends on temperature by its 
definition.21 

Using the above approximations we have calculated 
the absorption coefficients. Deviations of the calculated 
values of the absorption coefficient from measured values 
are shown in Fig. 3. In addition to the conventional for 
us treatment of the case of large frequency shifts beyond 
the band head in terms of the line wing theory great 
attention was paid to joining the Lorentz line shape and 
the line wing contour and, accordingly, to the study of 
absorption within the band, particularly, in the gaps 
between the lines. Figure 4 depicts the deviations of 
calculated values of the absorption coefficients from the 
measured ones in the microwindows of the 4.3 μm CO

2
 

absorption band.  
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FIG. 3. Deviations of calculated values of the absorption coefficient from the measured for CO

2
–CO

2
 and CO

2
–N

2
 

mixtures at different temperatures beyond the 4.3 μm CO
2
 band head. 

 

 
 
FIG. 4. Deviations of calculated values of the absorption coefficient from the measured ones for CO

2
–CO

2
 and CO

2
–N

2
 

mixtures at different temperatures in the microwindows of the 4.3 μm CO
2
 absorption band. 

 
The line shape parameters associated with the 

quantum intermolecular interaction potential remain 
unchanged at the temperatures and pressures under study. 
Both the quantum potential parameters and the temperature 
dependence of the "classical intermolecular interaction 
potential" were described earlier (see Ref. 7 for references 
therein). Temperature dependence of V(R) is taken into 
account through the temperature dependence of the 
parameters of the corresponding Lennard–Jones potential.  

The temperature dependences of ε and σ are depicted in Fig. 5. 
For the case of CO

2
–N

2
 the depth ε of the potential well does 

not vary with temperature. The behavior of σ shows some 
peculiarities. It appears that the data on κ(ω, T) in 
microwindows at low temperatures can be described only if 
the functional form of the potential is changing with 
temperature. That is, the necessary potential at low 
temperatures is, to some extent, narrower than the Lennard–
Jones potential (Fig. 6). 
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FIG. 5. Temperature dependence of the parameters of "classical potential" V(R): 1) σ for Δω < 20 cm�1 and 2) σ for 
Δω < 20 cm�1. 
 

 
 

FIG. 6. Change of the shape of the classical potential for 
CO

2
–N

2
 mixture with temperature. The parameters of 

Lennard–Jones potential are: 4ε = 528 K; 1) σ = 3.8 A° , 

2) σ = 3.76 A° , and 3) σ = 3.6 A° . Bold curve shows the 
potential used in calculations. 
 

 
 
FIG. 7. Effect of hot bands on the absorption in the wing 
of the 4.3 μm CO

2
 absorption band. P = 0.2675 atm; 1 and 

1′ are for T = 291 K and 2 and 2′ are for T = 673 K. 
Dashed curves indicate calculations with κ from Ref. 6, 
solid lines denote the experimental data18 and the 
calculations by the line wing theory that coincide with 
each other in the figure scale. 
 

Note that relative contributions of selective and 
continuous absorption (corresponding to small and large 
frequency shifts, respectively) to the total absorption  

coefficient change essentially depending on the temperature 
and pressure, see, for example, Ref. 22. Thus, it appears 
that the absorption coefficients determined in Ref. 6 at high 
temperatures and at pressures up to ∼ 40 atm in the band 
wing being applied to calculations at low pressure show 
poor agreement with the experimental data of Ref. 18 in 
which the absorption due to hot bands beyond the band 
head is distinctly observed (Fig. 7). 

On the whole our results show that the line wing 
theory gives physically consistent and mathematically 
noncontradictory picture of the contour formation in the 
line wing and provides a quantitative description of the 
experimental data available. 
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