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The feasibility of using the optimal Markovian filtration in sensing of the 
troposphere at altitudes up to 3 km by the DIAL method is illustrated on the basis of 
a stochastic model of the altitude behaviour of temperature fluctuations smoothed by 
lidar pulses. The Calman-Bucy algorithms for optimal estimate of the fluctuating 
profiles of temperature and its variance are synthesized. Their efficiency is analyzed 
by a numerical simulation technique as applied to sensing in the line of absorption of 
the A–band of oxygen at the transition Pp27 centered at λ = 768.3802 nm. 

 

Introduction. Routine information about the profiles 
of meteorological parameters with high spatiotemporal 
resolution and accuracy is needed for solving many problems 
in meteorology, ecology, and atmospheric physics. Because 
the efficiency of temperature lidar sensing by any method is 
limited by the fluctuations in the temperature and return 
signals, in particular, by shot fluctuations, it is necessary to 
increase the energy potential of a lidar and to optimize 
processing of received signals. 

In Refs. 1–8 the feasibility of optimizing with the help 
of the Markovian filtration was demonstrated as applied to 
single–frequency and bifrequency sensing of the fluctuating 
temperature and related parameters with the use of Rayleigh 
and Raman scattering in the vibrational–rotational 
spectrum of nitrogen. In Ref. 9 this elaboration was 
continued as applied to the optimization of signal processing 
of the differential absorption lidar (DIAL) and the 
equations of filtration were derived on the basis of the 
Markovian model of altitude behaviour of fluctuations in a 
gas concentration smoothed by the lidar pulse. 

In this paper the Markovian filtration is used for 
optimal reconstruction of the fluctuating profiles of 
temperature in sensing of the temperature in the absorption 
line of the A–band of oxygen. Concrete estimates are given 
as applied to sensing at the wavelengths of an alexandrite 
laser or a titanium–doped sapphire laser in the absorption 
line of oxygen at the transition Pp 27. 

Physical premises. We consider the ground–based 
monostatic lidar generating the pulses with the normalized 
power function f(t) at the wavelengths λ1 and λ0, lying in 

the center and off the oxygen absorption line, and sensing 
of the atmosphere in the altitude range [h0, hmax]. The 

power Psi (h) of the signal component at the detector input 

in the single–scattering approximation from the distance h 
at λi is determined by the lidar equation. 

Assuming that smoothing over the running interval 
[h – L, h] changes substantially only the profiles of the 

functions 
~
Ygi (0, h) describing the transmission at λi due to 

absorption by molecular oxygen and the altitude profiles of 
the absorption characteristics and related atmospheric 
thermodynamic parameters, we obtain the following form of 
the lidar equation9: 
 

Psi(h) = χ1 E0 Sa h
–2 βi(h) 

c
2 Yai(0, h) YRi(0, h) Ji(h) , (1) 

 

Ji(h) = 
2
c ⌡⌠

0

h

 dh′ f [2(h – h′)/c] 
~
Ygi

2 (0, h′) ,  (2) 

 

where χ1 is the efficiency of the entire optical train, E0 is 

the pulse energy, Sa is the effective area of the receiving 

aperture, Yai and YRi are the transmission functions due to 

aerosol and molecular scattering, c is the speed of light, 
L = cτp/2, τp is the effective pulse width, and βi(h) are the 

profiles of the backscattering and molecular scattering 
coefficients. 

The molecular mass absorption coefficient has the form 
 

Kg(λi, h) = Sg(λi, h) fg(ν − ν0) ,   (3) 

 
where Sg(λi, h) is the intensity of the absorption line 

depending on T(h), while fg(ν − ν0) describes the shape of the 

absorption line. In the troposphere below 3 km the collisional 
broadening prevails, and taking this into account for ν = ν0, at 

the absorption line center we have f(0) = 1/[πγL(λi, h)], 

where γL(λi, h) is the Lorentz halfwidth of the absorption line 

depending on the temperature T(h) and pressure P(h). In 
Ref. 10 for the Voigt shape of the O2 absorption line the 

analytical approximation 
 

f(0) = 
1

3γL(λ, h) ⎣
⎡

⎦
⎤1 – 

e
10 bDL

  (4) 

 
was proposed accurate to 0.1% at altitudes up to 2 km and 

to 0.7% in the troposphere, where bDL = (γL/γD) ln2 and 

γD(λ, h) is the line halfwidth due to Doppler broadening. 

Following the approach adopted in Refs. 2 and 8, we 
represent the random temperature values in the form 

T(h) = 
–
T(h) + Δ

~
T(h), where 

–
T(h) is the mean profile 

known a priori with sufficient statistics and the bar denotes 
averaging over the ensemble of temperature fluctuations. 
The use of Eq. (4) permits us to write down the relation for 
the profiles KO2

(λ1, h) of the O2 absorption for arbitrary 

T(h) and P(h) and 
–
KO2

(λ1, h) for 
–
T(h) and 

–
P(h). The 

bifrequency method of temperature sensing is based on  
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measuring the volume scattering coefficient 
γ1(h; T(h), P(h)) in the maximum of the O2 absorption 

line.10,11 Therefore, taking into account the fact that 
 
γ1(h; T, P) = q0(1 – q(h)) b(h)KO2

(λ1, h)  

 

we have  

γ1(h; T, P) = γ1(h, 
–
T, 

–
P)⎝
⎛

⎠
⎞ 

–
T
T

3/2 

× 

 

× exp

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫hP c

k
 

 
E1′′

⎝
⎛

⎠
⎞1

–
T
 – 

1

T
  ,  (5) 

 
where q0 = 0.2095 is the volume content of oxygen in the 

dry atmosphere, q(h) is the volume content of water vapour 
at the altitude h, b(h) is the density profile of air, and hP 

and k are the Planck and Boltzmann constants, respectively. 

As far as in the atmosphere σT (h) � (h), where σT (h) 

is the rms error of T(h), Eq. (5) can be linearized with 

respect to natural fluctuations Δ
~
T(h), i.e., 

 

γ1(h; T, P) = γ1(h; 
–
T, 

–
P) exp

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

B(h) 
Δ
~
T(h)
–
T(h)

 , (6) 

where  

B(h) = 1.439 
E1′′

–
T(h)

 – 
3
2 .  (7) 

 
In Ref. 11 it was shown that the transition P P

 27 

centered at λ1 = 768.3802 nm with the energy of the lower 

level E′′1 = 1085.206 cm–1 is most suitable for determining the 

temperature at the altitudes up to 3 km. It is evident from 

Eq. (7) that in the troposphere for real 
–
T(h) at this transition 

B(h) < 10. For this reason Eq. (6) admits further linearization 

with the fluctuations Δγ1 = γ1 – –γ 1 in the O2 absorption 

coefficient and the temperature fluctuations Δ
~
T(h) being 

related linearly since 
 

γ1(h; T, P) g γ1(h; 
–
T, 

–
P)
⎣
⎢
⎡

⎦
⎥
⎤

1 + B(h) 
Δ
~
T(h)
–
T(h)

 .  (8) 

   Let us expand  
 

~
Yg1

2 (0, h) = exp
⎩
⎨
⎧

⎭
⎬
⎫

 – 2 ⌡⌠
0

h

 dh′ γ1(h′; T, P)       

 

in a Taylor series expansion in terms of the profile Δ
~
T(h) 

about the altitude realization smoothed by the sensing pulse  
 

ΔT(h) = 
2
c ⌡⌠

0

h

 dh′ f [2(h – h′)/c] Δ
~
T(h') .  (9) 

 

Because the profiles Δ
~
T(h) and ΔT(h) are close in values, for 

the wavelength λ1 the functional given by Eq. (2) can be 

written down in the form J1(h) g 
–
Yg1

2 (0, h) exp[–2 Δτ1(0, h)],  

where 
–
Yg1(0, h) is the transmission due to absorption by 

oxygen for T(h) and P(h), while  
 

Δτ1(0, h) = ⌡⌠
0

h

 dh′ g1(h′; 
–
T, 

–
P) B(h′) ΔT(h′)/

–
T(h′)  (10) 

 
are the fluctuations of the optical thickness. As far as the 

optimal mean optical thickness11 –τ 1(0, h) g 1.1, then with 

the use of the Bunyakowskii–Schwarz inequality it can be 

shown that Δτ1 
2(0, h)  � 1 . 

By linearizing the relation for J1(h) we obtain 

 

J1(h) g 
–
Yg1 

2 (0, h)[1 – 2 Δτ1(0, h)] .  (11) 

 
Thus, when the profiles of the Rayleigh and aerosol 

backscattering coefficients and the transmission functions 
are deterministic but unknown altitude function, the 
statistical structure of the return power profile Ps1(h) is 

determined by the linearly related temperature fluctuations 
ΔT(h) smoothed efficiently in accordance with Eq. (9) over 
the spatial range L. 

Signal and noise model. Let L . h 
n
cT, when h 

n
cT is the 

vertical correlation distance of the nonsmoothed fluctuations 

Δ
~
T((h). Then for the normalized fluctuations 

η1(τ) = ΔT(cτ/2)/σT (h) the approximation in the form of 

the Gaussian Markovian process, which was proposed in 
Refs. 1–3, is acceptable. We introduce the state variable 

η2(τ) = Δτ1(0, h)/μ(h), where μ(h) = σT (h)/
–
T(h) is the 

variation coefficient of fluctuations in T(h), and 
differentiate Eq. (10). Following Refs. 8 and 9 we conclude 
that the complete statistical description of the temperature 
fluctuations and the related absorption characteristics is 
provided by the two–dimensional vector–process 
η = {η1, η2}

T, the stochastic differential equation (SDE) for 

which has the form  
 

dη
dτ

 = A(h) η(τ) + w(τ) , (12) 

 
where w1(τ) = {w1(τ), 0}T, w1(τ) is the Gaussian white noise: 

 
<w1(τ)> = 0 , <w1(τ) w1(τ′)> = 2 α δ(τ – τ′) , α = 1/τp , 

 

A(h) = 
⎝
⎛

⎠
⎞– α    0

c γ
–

1(h) B(h)/2   0
 . 

 
For the given realizations η(τ) the current of the 

photodetector in the ith channel is 
 

yi(τ) = si(τ; η, ui) + ni(τ) ,  (13) 
 

where si is the signal current averaged over the ensemble of 

shot fluctuations, 
 

si(τ ; η, ui) = s
–

i(τ ; ui) (1 + CT
η) , C = {0, – 2μ(h)}T ,  

 

s
–

i(τ ; ui) = ξi P
–

si(h) , ξi = 
χd qe

hP c
 λi , ui = {βi, YRi} ,  
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Y
Σi = YaiYRiY

–
gi , qe is the charge of electron, ni(τ) is the 

Gaussian process with zero mean including the shot 
fluctuations of the signal, background, and dark current in 
the ith channel. Under the condition Πiτp . 1, where Πi is 

the bandwidth of the postdetector filter in the ith channel, 
the process ni(τ) may be considered as white with the 

spectral power density 
 

N0i/2 = qe[ s
–

i + ξi Pbg i + sdc i] ,  
 
where Pbg i and sdc i are the background power at the input 

and the dark current of the ith detector and χd is the 

quantum efficiency of photodetector. 
Filtration equations. We search for the technique of 

processing of the photocurrents y(τ) = {yi(τ)}, i = 0,1 

providing the optimal (in the sense of maximum a posteriori 
probability density) estimate of the realization η(τ). By virtue 
of the assumptions adopted above it is necessary to estimate 
simultaneously the unknown profiles ui. Following Refs. 5, 7, 

and 8 we avoid the a priori ambiguity in ui by adopting the 

variant of maximum likelihood that in our case of the additive 
Gaussian noise reduces to solving the equation 

 

y0(τ) = s–0(τ; u~0) ,  (14) 

 

where u~0 is the estimate of ui at λ0. It should be noted that 

Eq. (14) is derived under condition that the O2 absorption 

at λ0 can be neglected. As λ0 and λ1 are closely spaced, the 

wavelength dependence of the aerosol and molecular 
scattering coefficients can be disregarded and thereby the 

estimates u~0 obtained at λ0 can be used in processing of the 

signals at λ1. 

By applying the Gaussian approximation of the 
a posteriori probability density η, we arrive at the 
Calman–Bucy system of the equations for quasioptimal 
filtration5,12 
 

h
⋅

* = A(h) η* + 
2

N1
 KC [ y1(τ) – s

g

1(τ)(1 – 2μ(h) η+
2] ,  (15) 

 

K
⋅

 = AK + K AT + b – 
2 s
g

1
2

N1
 KCCT K , (16) 

 

which must be completed by Eq. (14) to obtain the estimate 

s
|
0 and thereby s

g

1 = s
g

0

–
Y 2

g1, where K = <(η – η*)(η – η*)T> 

is the a posteriori correlation matrix η, b = {bij} is the 

matrix of diffusion coefficients, b11 = 2α, and bij = 0 for 

(i, j) ≠ (1,1). The initial conditions are prescribed at 
τ0 = 2h0/c: η*(τ0) = 0, K11(τ0) = 1, and Kij(τ0) = 0 for 

(i, j) ≠ (1, 1). 
The optimal processing consists in simultaneous 

solution of the system of equations (14)–(16) as the 
sampled data yi(τ) become available with the use of the 

a priori profiles 
–
T(h), σT (h), γ1(h; 

–
T, 

–
P), and so on, initial 

conditions, and appropriate finite–difference method. The 
solution of this system yields the optimal estimate η*1 and 

hence the estimate of the profile T(h) 
 

T*(h) = 
–
T(h)[1 + μ(h) η*1(τ)] . (17) 

 
Analysis of the filtration efficiency. If in the 

calculations the estimate s
|
1 is replaced by its mean value or 

by the profile constructed on the basis of the atmospheric 
optical model, then Eq. (16) is independent of the chosen 
realizations y(τ) and can be analyzed a priori. As a figure 
of performance of the filtration we consider the altitude 
dependence of the variance of temperature estimate. 
According to Eq. (17) 

 

D[T*(h)] = μ2(h) 
–
T 2(h) D[η*1(τ)] ,  (18) 

 
where D[η*1(τ)] = K11(τ) is the corresponding diagonal 

element of the matrix K satisfying Eq. (16). In its turn 
from Eq. (18) the relation for K11(h = cτ/2) can be derived 

in the following form: 
 

K11(h) = D[T*(h)]/D[T(h)] ,  

 

since D[T(h)] = μ2(h)T
–

 2(h). Thus, K11(h) represents the 

ratio of the a posteriori variance of the estimate T*(h) to 
the a priori variance of fluctuating temperature profile 
T(h). 

The dynamics of the filtration efficiency can be 
analyzed if for K12(h) we write down the approximation  

 

K12(h) g γ
–

1(h) LB(h) K11(h) ,   

 

which is valid for L � h – h0. In this case the equation for 

K11(h) can be integrated independently of the other 

equations of system (16). As a result, analogously to Ref. 9 
we have 

 
dK11(h)

dh  = – 
2
L [K11(h) – 1 + Q(h; λ, E′′

1)K11
2 (h)] , (19) 

 
where  
 

Q(h; λ, E′′
1) = 

4 s– 21(h) μ2(h)

N1α
 [ γ

–
1(h) L]2 B2(h) . (20) 

 

The quantity Q(h; λ, E′′
1), whose value determines the 

filtration efficiency, is referred to as the generalized signal–
to–noise ratio, much as it was done in a number of our 
previous papers.1–9 

However, in contrast to the case of sensing of T based on 
elastic and Raman scattering in which the generalized signal–
to–noise ratio depends on the signal–to–noise ratio at λ1 due 

to elastic scattering [the term s– 21/(N1α)] and on the variation 

coefficient μ(h), in this case it depends additionally on the 

optical thickness (the term γ
–

1(h) L) of differential absorption 

in the layer [h – L, h] and on the energy E′′
1 of the lower 

level of the chosen transition [the term B(h)]. 
The filtration makes sense only at the altitudes where 

K11(h) � 1, what is possible only for Q . 1 (see Refs. 1–9). 

The profiles Q(h; λ, E′′
1) at the transition Pp 27 of the O2  
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absorption line centered at λ1 = 768.3802 nm have been 

calculated for analysis of the altitude behaviour of Q(h; λ, E′′
1) 

in the regime of threshold signal sensitivity preset by the shot 
noise. An alexandrite or titanium–doped sapphire laser was 
used as the source of radiation. Opto–meteorological models 
were borrowed from McClatchey.13 The lidar specifications14 
used in calculation were the following: 
 
Wavelength, nm 768.3802 
Pulse energy, mJ 100 
Pulse repetition frequency, Hz 10 
Pulse width, μs 0.66; 1.33 
Diameter of the receiving aperture, m 0.5 
Width of the lasing line, cm–1 0.02 
Quantum efficiency of the photodetector 0.24 
 

 
 
FIG. 1. The profiles of the generalized signal–to–noise ratio 
over the period Δts = 1 min for L = 100 m and μ = 0.33⋅10–2 

(1), 0.5⋅10–2 (2), and 10–2 (3); for L = 200 m and 
μ = 0.33⋅10–2 (4), 0.5⋅10–2 (5), and 10–2 (6). 
 

 
 
FIG. 2. The profiles of the errors in optimal 
reconstructing T(h) for the same parameters (see Fig. 1). 
 

In Fig. 1 the profiles Q(h) are shown for different pulse 
energies E0, the spatial resolution L of the lidar, and the 

numbers M = fp Δts of sensing pulses, where fp is the pulse 

repetition frequency and Δts is the sensing period. It can be 

seen from the figure that for the real lidar parameters the 
required values are obtained even at the altitudes up to 3 km. 

By assuming dK11/dh = 0 in Eq. (19), we write down 

the solution K11(h) of the quadratic equation for K
–

11(h) in the 

form8,9  
 

K
–

11(h) = 
1

2Q(h) { 1 + 4 Q(h) – 1} . (21) 

 

The random error σ*T = D(I*) in optimal estimating 

the temperature is 
 

σ*T = σT (h) K11(h) ,  (22) 

 
and for this reason using the obtained values of Q(h) the 
profiles K11(h) [according to Eq. (21)] and the errors σ*T in 

reconstructing T*(h) were determined. They are shown in 
Fig. 2. It can be seen from the figure that the optimization 
of processing with the help of the algorithm for the 
Calman–Bucy filtration will ensure the effective 
reconstruction of fluctuating temperature profiles 
disregarding the systematic errors of different kinds, which 
have been analyzed in Ref. 11. 

Conclusion. The algorithm for the Calman–Bucy 
filtration is synthesized which enables us to optimize 
processing of signals of the differential absorption lidar 
operating in the current regime in sensing of the troposphere 
at the altitudes up to 3 km. It has been shown that the 
efficiency of filtration of spatial temperature realizations 
depends on the generalized signal–to–noise ratio 
(introduced in the paper) which accumulates all the factors 
determining the efficiency of implementation of the method. 

The author would like to acknowledge Prof. 
G.N. Glasov for useful remarks and advice and N.A. Shefer 
for her assistance in some calculations.  
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