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Several variants of reaction sets forming the ozone cycle in the absence of radiation 
are treated. Their phase portraits in the reaction triangle are drawn. The variations in 
the simplest phase portrait due to incorporating the additional reactions are described. It 
is shown that the system including all the considered reactions has a steady state with 
the zero ozone concentration. However, this steady state is not really reached because of 
the extremely large characteristic time of the process. 

 
1. Recently arisen question on the nature of physical 

processes responsible for specific seasonal decreases of 
concentrations of the stratospheric ozone above some regions of 
the Earth's surface appears to be a subject of not only 
scientific discussions. Up to now it is impossible to argue 
either natural or anthropogenic factors play a primary role in 
this decrease. 

We would like to answer the question whether the 
variations in the atmospheric photochemical processes caused 
by additional reactants and reactions could lead to the 
qualitative changes in the behavior of the oxygen species. We 
use the qualitative analysis of systems of nonlinear differential 
equations1,2 as a mathematical instrument which is the best 
suited for searching for an answer to the question in hand. 
Note that earlier there were attempts to use this mathematical 
instrument for investigating the ozone cycle. The stability of 
the system was analyzed in the vicinity of steady states of the 
Chapman cycle.3–6  

This paper is concerned with the simplest ozone cycle in 
the absence of radiation and variations in its phase portrait 
resulting from two additional reactions. 

2. The simplest possible system of reactions of the ozone 
cycle includes the ozone formation during three–particle 
collision and its decomposition in the collision with the 
oxygen atom. 
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Here M is an arbitrary particle. The qualitative analysis 
of the set of reactions (1) with M = O

2
 was performed in 

Ref. 7 where on its basis the difference in the behavior of this 
system and the similar system with the constant O

2
 

concentration was discussed. 
If the process (1) is treated as taking place in the 

homogeneous closed isothermic reactor of ideal mixing it is 
described by the following system of differential equations for 

concentrations ([O
2
] = x~, [O] = y~, [O

3
] = z~, [M] = M

~
) 
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It is assumed hereafter that M is neither the O
2
, O

3
 

molecules, nor the O atom. This situation, in principle, 
could be related to the species O, O

2
, and O

3
 placed into 

the "bath" with chemically inert species (N
2
, He, etc.). We 

consider this model situation to obtain the simplest system 
of equations for analysis. 

For the sake of further convenience let us introduce 
the new dimensionless variables in Eq. (2) 

 

t = αt~ , x = βx~ , y = γy~ , z = δz~ , M = μM
~

 , (3) 
 

where   

β = γ = δ , α = κ
3
/γ , μ = κ

2
/k

3
 , (4) 

 

and the absolute value of γ is immaterial (it can be chosen 
to be equal to unity, for example). Then we obtain the 
system of equations  

⋅

x = – M x y + 2 y z ,  
⋅

y = – M x y – y z , (5) 
⋅

z = M x y – y z . 
 

As is well known, when solving this system, the 
conservation law of the number of atoms participating in 
the reaction should be taken into account, namely 
 

2x~ + y~ + 3z~ = A
~
 

 

or  

2 x + y + 3 z = γ A
~
 = A (6) 

 

in terms of variables (3). Using the conservation law in 
Eq. (6) system (5) can be reduced to the system of two 
equations for any chosen pair of variables. Thus, for 
example, for the variables y and z it takes the form  

y
⋅

 = – (AM/2) y + (3 M/2 – 1) y z + (M/2) y 
2 ,

z
⋅

 = – (AM/2)y + ( – 3 M/2 – 1) y z + (M/2) y 

2 .
 (7) 

 

In the finite part of the plane the system of Eqs. (7) 
has one singular point which is a saddle (y = A, z = 0) and 
one singular line (the straight line consisting of the singular 
points) described by the equation y = 0. The physically 
allowable region for y and z is the first quadrant (since the 
concentrations cannot be negative) in which the 
conservation law Eq. (6)) separates out the finite region,  
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the so–called reaction triangle, so that the concentrations 
cannot exceed certain values. The reaction triangle in the 
three–dimensional space (x, y, z) and as projected onto 
three planes is presented schematically in Fig. 1 together 
with trajectories and saddle separatrixes. The trajectories 
starting from any point of the triangle terminate at the 
singular line with the zero concentration and with some 
finite values of concentrations of O

3
 and O

2
. The regions 

of the triangle divided by the saddle separatrix cannot be 
connected with any trajectory. 

 

 
 

FIG. 1. Three–dimensional phase portrait and its 
projections for system (4). 

 
3. Let us consider the set of reactions (1) 

supplemented by the reaction reverse to the reaction of 
ozone formation (1) and by the reaction of recombination 
of oxygen atoms 
 

O3 + M →
κ
4
 O + O

2
 + M ,

O + O + M →
κ
1
 O

2
 + M .

 (8) 

 

 
 

FIG. 2. Three–dimensional phase portraits and their 
projections on the plane (y, z) for four sets of reactions. 
Trajectories on the plane correspond to M = 1 and A = 1. 
 

The three–dimensional phase portraits and their 
projections on the plane (y, z) in the case of successive 
inclusion of reactions (8) are depicted in Fig. 2. For 
visualization the axes are denoted by the symbols of the 
oxygen species. It can be seen that the inclusion of 
additional reactions changes the phase portrait of the 
system significantly. For example, the incorporation of 
the reverse reaction, i.e., the additional channel of ozone 
decomposition "reduces" the singular line into the 
complex singular point at the origin of coordinates 
retaining the saddle unchanged while the recombination 
reaction retains the singular line unchanged but displaces  

the singular point toward the nonphysical region of 
negative concentrations and changes its character. At the 
values of parameters compatible with the atmospheric 
concentrations and corresponding reaction rates (see 
below) this point has the coordinates x > 0, y < 0, z > 0 
and is the node. In the reaction triangle the concurrent 
inclusion of both reactions (8) leaves only one singular 
point at the origin of coordinates which is the complex 
singular points with the nodel sector within the reaction 
triangle. Thus, the changes are essential. Especially 
dramatic change is that caused by the inverse reaction, 
namely, the steady state of the system appears to be the 
state with zero concentrations of both atomic oxygen and 
ozone (see Figs. 2 c and 2 d). Since reactions (1) and (8) 
are the reactions naturally taking place in the atmosphere 
and disappearance of ozone was not observed even during 
the polar night, the question arises of whether the model 
under study is adequate to the real state of the 
ozonosphere. The answer can be obtained by means of 
numerical simulations. 

4. The system of equations for concentrations of O 
and O

3
 in the case presented in Fig. 2 d [analogous to 

system (7)] has the form 
 

y⋅=– (AM/2) y + M z + (3 M/2 – 1) y z + (M/2–2 c M) y
2

 ,

z⋅=–(A M/2) y – M z + (–3 M/2–1) y z – (M/2) y
2

 ,
(9) 

 
where, in addition to relations (3) and (4) we have 
 
γ = κ

2
/κ

4
 , c = κ1/κ2

 . (10) 

 
The concentration behavior depicted in Fig. 2 d 

corresponds to system (9) with A = 1 and M = 1, i.e., to 
the case when all the terms in the right–hand sides of 
equations are comparable in their values, that best 
demonstrates the qualitative peculiarities of the system. 
Under conditions of the real atmosphere the 
concentrations of the oxygen species differ radically in 
their values. For estimates let us take the values of 
concentrations given in Ref. 8 for a height of 30 km 
[O

2
] = 2.93⋅1017cm–3, [O] = 6.75⋅107cm–3, [O

3
] =3.96⋅1012cm–3, 

and [M] = [N
2
] = 2.93⋅1017 cm–3, and the values of reaction 

rate constants from Ref. 9 at T = 224.6 K are 
κ

3
 = 6.782⋅10–16 cm3/s, κ

1
 = 7.937⋅10–33cm6/s, 

κ
2
 = 1.023⋅10–33 cm6/s, and κ

4
 = 5.822⋅10–32 cm3/s. For 

the above–enumerated values of rate constants and 
concentrations the trajectory behavior in the coordinates 

y~ and z~ has the form shown in Fig. 3 a. At first sight the 
trajectory behavior is completely analogous to that shown 
in Fig. 2 b, i.e., the concentration of the oxygen atoms 
drops almost to zero over the periods of time of some 
seconds and, within the figure scale, the process 
terminates at a certain finite ozone concentration. 
However, closer investigation shows that at the times 
long enough a very slow decrease of the ozone 
concentration starts, even at those trajectories where 
initially its radical increase takes place, see Table I. In 
the table, for the more convenient illustration, the 
example shown in Fig. 3 a with the initial conditions at 
the point A is chosen. Whereby, during a fraction of 
second, the ozone concentration increases up to its 
maximum value and its subsequent decrease at the 
considered times is observed only at the 11th significant 
figure. Schematically, this situation is shown in arbitrary 
scale in Fig. 3 b. 
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FIG. 3. The O and O
3
 concentration behavior: (a) 

calculated under atmospheric conditions and (b) 
schematically depicted in the vicinity of the O

3
 axis. 

 

TABLE I. 
 

t, s [O], cm–3
 [O3], cm

–3
 

0.0000 
0.0259 
0.1036 
2.5907 

32.7370 
110.8400 
207.2500 

2.845 759 + 16 
4.502 485 + 15 
4.253 760 + 14 
4.981 498 + 00 
4.981 498 + 00 
4.981 498 + 00 
4.981 498 + 00 

0.0 
4.772 248 400 802 + 15 
6.615 853 858 618 + 15 
6.864 939 646 371 + 15 
6.864 939 646 370 + 15 
6.864 939 646 366 + 15 
6.864 939 646 362 + 15 

 

 
 

FIG. 4. Temporal behavior of the atomic oxygen 
concentration for the sets of reactions shown in Fig. 2. 

 

Finally, within the framework of the model the ozone 
concentration actually diminishes, however, this decrease is so 
slow (the formal estimate gives the time of reaching the steady 
state of the order of about 107 years), that could not be fixed 
experimentally during daily and monthly variations in ozone 
concentrations. The variations in temperatures and rate 
constants do not affect practically the characteristic time. 

In should be noted that the sharp decrease of the 
atomic oxygen concentration virtually stops at some small 
value due to the inverse reaction, see Fig. 4, that also 
prevents, to some extent, the total disappearance of ozone. 

To this end, within the framework of the above–
discussed models of the ozone cycle under atmospheric 
conditions there are no chemical reactions which could 
result in a noticeable decrease of the ozone concentration. 
Nevertheless, the existence of the steady state with zero 
concentrations makes one pay a special attention to other 
reactions and accelerate the attainment of a steady state. 
Study of such potentialities will be a subject of further 
investigations. 
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