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It is shown in this paper that diffraction of an optical wave on the reflector 
edges can strongly influence on the distribution of the reflected wave intensity and the 
amplification of backscattering under conditions of weak turbulence. This study also 
revealed an oscillating dependence of the amplification factor on the Fresnel number 
of both a plane and a corner-cube specular reflectors. On the other hand, under 
conditions of strong turbulence in the atmosphere, the influence of an optical wave 
diffraction on the reflector edges becomes inessential. 

 
Analysis of the efficiency of correction for atmospheric 

distortions by an adaptive optical system normally deals 
with the situation when predistortions introduced into a 
feedback are formed based on information extracted from 
reference waves.1,2 The reference waves are, as a rule, 
produced by illuminating special reflectors (beacons) with a 
laser beam, so that in a number of cases the incident and 
reflected (reference) waves can propagate along one and the 
same path, passing, as a result, through the same 
inhomogeneities of a medium. Just this situation is observed 
in locating different objects in the atmosphere. It is well 
known3,4 that in such cases some effects can occur due to 
correlation between the incident and reflected waves like an 
increase of the mean intensity of the reflected wave 
(amplification of the backscatter), an increase of fluctuations 
of its intensity and phase compared to those in the case of 
wave propagation through a double path along one direction, 
and so on. In this context it is important, for solving the 
problems in ranging and correcting atmospheric turbulence, to 
know how strong can be the amplification effects, if 
simultaneously accompanied by other phenomena, including 
such as the diffraction of a wave on the reflector edges. 

In this paper we consider the influence of wave 
diffraction on the reflector edges on the backscattering 
amplification effect at different Fresnel numbers of a 
reflecting surface characterized by some effective radius. In 
Refs. 5 and 6 the authors considered only the case of 
reflectors with smooth edges, when the reflection coefficient 
varies across the reflector according to the Gauss law what 
sometimes gives results that poorly agree with experiment.7 
In Ref. 8 an account of diffraction effects was performed 
based on numerical simulations of wave propagation along 
the paths with reflection, but the results presented in this 
paper were calculated using the parameters that did not 
allow a comparison with the experimental data from Refs. 7 
and 9 to be done, and physical conclusions to be drawn. 

Let a spherical wave be incident on a reflector, as in 
the experiments described in Refs. 7 and 9. Then, in 
accordance with the representation of a wave field in a 
randomly inhomogeneous medium in the form of a path 
integral,10,11 the complex amplitude of the reflected wave in 
the plane of a light source can be presented as follows:  
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where κ = 2π/λ is the wave number; x – x

0
 is the distance 

between the source in the plane x′ = x
0
 and a reflector 

(beacon) in the plane x′ = x; ρ = {y, z}, ρ′, r, a, b are two–
dimensional vectors; ε

1
(x′, ρ) is the fluctuating part of the 

dielectric constant of air; 
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The function  
 

V(ρ′, r) = A(r) δ(ρ′ ± r) 
 

characterizes the local reflection coefficient of the surface, 
A(r) is the amplitude function, δ(ρ) is the Dirac delta 
function, the minus sign is for a plane mirror and the plus 
sign for a corner–cube retroreflector. 

Assuming that integral of the field ε
1
 in the exponent 

of Eq. (1), over the path is a normal random value and the 
field itself is locally homogeneous, isotropic, and satisfies 
the condition of delta–correlation12 one obtains using 
Eq. (1) a formula for the mean intensity of the reflected 
spherical wave in the form of a path integral. 
Unfortunately, in the general case, it is impossible to 
analyze the resultant expression. To analyze the mean  
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intensity of a reflected spherical wave in the limiting cases 
of weak (β

0
2 < 1) and strong (β

0
2 . 1) intensity fluctuations 

one could use the known approaches described in detail, for 
example, in Refs. 11 and 13. However, we shall use some 
approximation of Eq. (1) for a reflected field like a 
generalization of the Huygens–Kirchhoff method for the 
case of smoothly inhomogeneous media.15 Grounds for some 
of approximations of this type are given in the monograph 
by Mironov.14 The approximate expression, we use in this 
paper for complex amplitude of the wave field, provides 
absolute agreement of calculational results with those 
obtained using perturbation methods4,13 in the region of 
weak fluctuations, assuming that similar series expansions 
over small parameter β

0
2 are used. At the same time this 

expression enables us to avoid limitations inherent in the 
perturbation methods when taking into account attenuation 
of the reflected wave intensity due to turbulence. In the 
case of strong fluctuations this approximation 
underestimates final results as compared with those obtained 
using strict approximate methods.4,13 That means that 
coefficients of terms containing factor in the expansion 
O(β 

0
–4/5) are underestimated. 

Thus, for mean intensity of a spherical wave reflected 
from a round plane mirror and a round–shaped corner–cube 
retroreflector, we have, assuming β

0
2 < 1, 
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When the direct and counter waves propagate along 
uncorrelated paths, irregardless of the type of a reflector, 
we have 
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Note that formulas (2)–(4) are given in the form 
which is suitable for numerical integration. The latter 
procedure has been performed successively using Gauss 
formulas.16 The calculations have been done only for the 
case of weak fluctuations (β

0
2 < 1). 

Let us now introduce the factor 
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This factor allows one to make quantitative estimates 
of the influence of counter–wave correlation on the 
intensity distribution of a reflected wave by comparing with 
the case in which the incident and reflected waves 
propagate along uncorrelated paths. 

 

 
 

FIG. 1. The Ωr–dependence of the amplification factor N: 

1) plane mirror and 2) reflector. Solid line corresponds to 
rigorous calculations and dashed line is calculation on the 
basis of a Gaussian model of A(r). 

 
Figure 1 presents calculations of N(0) for the case of 

weak intensity fluctuations (β
0
2 = 0.5) and for the detection 

being done at the source point. Dashed lines in this figure 
show the calculational results5 obtained using a Gaussian 
model for the reflection coefficient distribution, i.e., 
A(r) = exp{– r2/2ar

2}. It is evident from this figure that in 

the region of values Ωr ≤ 102 the dependence of the 

amplification factor on the reflector Fresnel number 
calculated taking into account diffraction on the reflector 
edges is essentially different than that calculated neglecting 
the diffraction. This dependence is of oscillating character 
both in the case of a corner–cube retroreflector and a 
plane–mirror reflector. However, in the case of a corner–
cube retroreflector the value N(0) is positive though it has a 
large amplitude of oscillations while for a plane mirror in 
the region of Ωr < 5 it is negative what means that in this 

case a decrease of the mean intensity of a strictly backward 
reflected wave occurs compared to the case of uncorrelated 
direct and backward propagation paths. The Gaussian model 
also shows a decrease of the mean intensity,5 but it does not 
describe an essential increase of the reflected wave intensity  
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compared to I
incoh

 at 5 < Ωr < 10. It is also can be seen from 

this figure that only at a sufficiently large value of Ωr 

(Ωr > 25 for a plane mirror and Ωr > 60 for a corner–cube 

retroreflector) the influence of the diffraction on edges of a 
reflector on the mean intensity amplification is negligible.  

It should be noted here that the effect of amplification 
of a wave reflected from an infinite plane mirror (Ωr > 102) 

at β
0
2 < 1 is much weaker than for a corner–cube retroreflector. 

The excess of the corresponding value I
incoh

 of the reflected 

wave intensity is only 25–35 percent what is well within the 
error of experimental measurements on field paths in the 
atmosphere.17 It is most likely that just this circumstance 
explains the situation that the effect of amplification of mean 
intensity of a spherical wave reflected from a plane mirror18 
has been confirmed experimentally only recently and for β

0
2 

exceeding unity (β
0
2 g 1.1–7.6), though its existence has been 

shown, theoretically, long ago.19 

 

 
 

FIG. 2. Mean intensity distribution of the reflected 
spherical wave for Ωr = 1 and β

0
2 = 0.5: 1) forward and 

backward waves propagate along different paths, 2 and 
3) forward and backward waves propagation along the same 
paths, 2′) plane mirror reflector, 3′) corner–cube 
retroreflector. Solid lines are rigorous calculations and 
dashed lines are calculations on the basis of the Gaussian 
model of A(r). 

 
Thus, the above calculations confirm the conclusion 

drawn in Ref. 7 that the Gaussian model for distribution of 
the reflection coefficient, which neglects the diffraction on 
the reflector edges, correctly describes the intensity 
distribution of a reflected wave at β

0
2 < 1 only in limiting 

cases of Ωr n 1 and Ωr . 1. Qualitatively it well agrees 

with the rigorous calculations in the region 10–1 n Ωr ≤ 1. 

A comparison of the model calculations with the rigorous 
ones for the distribution of a reflected wave intensity at 
Ωr =1 and β

0
2 = 0.5 is shown in Fig. 2. One can see in this 

figure at least qualitative agreement in the magnitude and 
in the rates of the curves fall off down to zero level. In both 
cases the curves are normalized by the corresponding 
maximum values of the intensity Im for uncorrelated direct 

and backward propagation paths. 

Further increase of the parameter Ωr into the region 

1 n Ωr ≤ 102 in which, according to Fig. 1, the influence of 

the diffraction effects becomes essential, results not only in 
quantitative but also in qualitative differences in the 
reflected wave intensity distributions. Most strong these 
differences are at the 2π–fold Fresnel numbers of a 
reflector, that is, when an even number of Fresnel zones are 
within the reflector area. In this case we have, at the center 
of a diffraction pattern, the minimum of the intensity 
instead of its maximum.20 

 

 
 

FIG. 3. Mean intensity distribution of a reflected spherical 
wave for Ωr = 6.28. 1) β

0
2 = 0 , 2–6) 0.3 , 2–4) calculations 

by formulas (4), (2), and (3), respectively, 5) Gaussian 
model of the reflection coefficient, (3 is the reflection from a 
plane mirror and 4, 5, 6 – from a corner–cube 
refroreflector), and 6) experimental data from Ref. 7. 

 
In Fig. 3 one can see the experimental and 

calculational data7 that correspond to Ωr = 6.28. The curves 

presented in this figure are normalized by maximum values 
relevant to each of them. It can be seen from this figure 
that the diffraction pattern observed in a homogeneous 
medium (β

0
2 = 0) is washed out (see curve 1) in the presence 

of turbulence. In the case of reflection from a mirror the 
correlation of the counter waves results in a more strong 
washing out of the diffraction pattern while at reflection 
from a corner–cube retroreflector the influence of 
turbulence is much weaker because of a partial reversal of 
the wave front occurring in this case. The experimental and 
calculational data agree only qualitatively. One of possible 
causes of the difference between the experimental and 
calculated intensity distributions is, as it was noted in 
Ref. 7, deviation of actual corner–cubes from an ideal one 
what inevitably smears the diffraction pattern. 

Analysis we have carried out above shows that under 
conditions of weak fluctuations (β

0
2 < 1) the diffraction on a 

reflector can strongly influence the distribution of intensity 
of a reflected wave and the backscattering amplification. All 
this should necessarily be taken into account when studying 
effects of ultra–high resolution of coherent images of 
objects in randomly inhomogeneous media that occur due to 
the backscattering amplification, as well as when analyzing 
efficiency of adaptive systems, in which a reflected radiation 
is used as a reference one. 

In the case of large β
0
2 values the turbulent distortions 

of a reflected wave dominate compared to those due to the 
diffraction effects, so that the use of a Gaussian model does 
not introduce any noticeable error in the final results, thus 
being well justified. The same is also valid for reflectors 
with a diffusely scattering surface. In the latter case the  
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diffraction effects are inessential at any intensity of the 
atmospheric turbulence along the propagation path. 
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