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The method of multiple reflections is in fact the modification of a two–flux 
approximation. Accuracy of this method is analyzed. It is pointed out that feasibility 
of the method is problematic.  

 

In 1978 B.A. Savel'ev reported on a method for 
solving the radiative transfer equation and called it the 
method of multiple reflections.1 By now Savel'ev et al. 
published more than ten papers concerning this problem (see 
Refs. 2–4 and the references cited therein) in which the 
method was used primarily for numerical solution of various 
problems.  

Below a critical review of this method is given.  
 

1. CONCEPT OF THE METHOD  
 

At present theory of radiative transfer is in fact one of 
the divisions of mathematical physics concerned with a 
solution of radiative transfer equation. The physical 
meaning of the radiative transfer equation is very simple: 
this is a balance equation for the number of radiated 
particles, which we call the photons for short, in an 
elementary volume. The simplest form of this equation is as 
follows:  
 
dI
dl = – αI + ⌡⌠ β(n′ → n) I(r, n′) dn′ .  (1) 

 
It means that the ray intensity I(r, n), i.e., the density 

of photons at the point r having the velocity direction 
n(⏐n⏐ = 1), diminishes along the ray l = r + ξn (ξ > 0) due 
to collisions with scatterers according to exponential law 
with the extinction coefficient α. The coefficients of 
equation are usually taken in the form  
 

α = c σ ,  β(n′ → n) = c σs p(n′ → n) ,  (2) 

 

where c is the number density of the scatterers, σ and σs are 

the cross sections of extinction and scattering by a single 
scatterer, p(n′ → n) is the probability density for a photon 
having the velocity direction n′ to have the direction n after 
a collision, the function p(n′ → n) is referred to as the 
scattering phase function. The last term of Eq. (1) means 
that in addition to the process of photon absorption by the 
scatterers there occurs a partly compensating process of 
formation of photons moving along the ray l due to their 
scattering from the other directions n′.  

Now let us assume that for some reasons the photons 
can move only along one direction, for example, along the x 
axis forward and backward. In this case the ray intensity 
being considered initially as a function in space of five 
variables r and n degenerates into two functions: the density 
of photons moving along the x axis I

1
(x) and the density of 

photons moving in the opposite direction I
2
(x). Balance  

equation for the number of radiated particles (1) 
degenerates into the system of two equations  
 
dI

1

dx  = – α′I
1
 + β′I

2
 ,  

 (3) 
dI

2

d(– x) = – α′I
2
 + β′I

1
 ,  

 
where the coefficients α′ and β′ are numerical  
 
β′ = c σs p′(n

0
 → – n

0
) ,  α′ = β′′ + c σ

ab
 ,  (4) 

 
n

0
 is the unit vector along the x axis, p′(n

0
 → – n

0
) + 

+ p′(n
0
 → n

0
) = 1, and σ

ab
 is the absorption cross section.  

The system of equations (3) is referred to as one–
dimensional radiative transfer equation. In comparison with 
general equation (1) in space of five variables whose 
solution is a matter of great concern of the entire division of 
mathematical physics, the one–dimensional transfer 
equation has a great advantage, namely, it can be solved in 
a simplest way. But this brings up the question of whether 
there are physical objects in nature which can be described 
by the one–dimensional transfer equation.  

A pile of plane–parallel plates which transforms the 
perpendicularly incident light into the photons moving 
along the x axis in forward or backward direction can be 
seemingly considered as such an object. However, this 
problem can be solved more rigourously using the Maxwell 
equations. Interference of the scattered waves proved to be 
of great importance in this problem. It was shown that even 
if a stratified randomly inhomogeneous medium is taken 
into consideration in which interference is expected to be 
insignificant because of the randomness of the reflected 
wave phases and the model concept of radiation as an 
ensemble of particles (photons) seems to be appropriate, the 
equation for the intensity differs from the one–dimensional 
radiative transfer equation (see, for example, Ref. 5).  

A pile of rough plates or a scattering medium 
consisting of a great number of small particles analogous to 
it, for example, clouds would be considered as the second 
physical object. It is well known that here interference of 
scattered waves is insignificant. In this case the Maxwell 
equations for the intensity are reduced to the radiative 
transfer equation but in its general form (1) in space of five 
variables, since here each scatterer produces photons moving 
in all directions.  

As to the problems with plane symmetry, for example, 
in the case of homogeneous layer and radiation incident 
normally on it, the fluxes of photons  
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0
)dn , I

2
' = ⌡⌠

nn<0

 I(r, n(nn
0
)dn  (5) 

 

by approximate integration of Eq. (1) can be reduced to a 
system of two equations which is in fact equivalent to 
system (3). Needless to say that the coefficients α′ and β′ 
are no longer determined from relations (4). This system of 
equations is referred to as a two–flux approximation (see 
Refs. 6 and 7).  

The two–flux approximation was used for practical 
estimates by the originators of radiative transfer equation 
(1) even in the 19th century. However, it has not yet been 
widely used. Usually, one mentions its use in paint and 
varnish industry to estimate the parameters of particles 
making up paint.  

A key point of the problem of the two–flux 
approximation is not a solution of the system of 
equations (3), which is simple, but a determination of the 
coefficients α′ and β′ in terms of the parameters of a 
scattering medium.6,7  

Let us consider one more physical object which can be 
described by the one–dimensional transfer equation. This 
object is a thin long bar or cylinder consisting of the light 
scattering particles. The radiation is incident on the end of 
it. Ideally, this is a one–dimensional chain of scatterers 
strung, for example, on the x axis. The radiation leaving 
the ends of this cylinder in the direction of the x axis is 
caused by multiple scattering in which a single scattering 
event is described by the coefficients in the form of Eq. (4). 
But it is easy to show that one–dimensional equation (3) is 
inapplicable in this case because the intensity of radiation 
scattered on a single scatterer will diminish along the x axis 
as x–2, whereas the system of equations (3) does not 
describe such a diminution.  

Thus, one–dimensional radiative transfer equation (3) 
has a physical meaning only as a two–flux approximation of 
general equation (1).  

Let us now proceed to the concept of multiple 
reflection method based on the physical concepts presented 
above.  

Goryachev et al.2 pretended to develop a "general 
heuristic approach" and "semi–analytical" method for 
calculating the radiation fluxes in the scattering media of 
arbitrary geometry. However, actually we have a 
calculation algorithm for a scattering medium in the form of 
a parallelepiped with a plane–parallel radiation flux 
incident normally on one of its sides. In Ref. 1 deposited in 
VINITI an algorithm for calculating the radiation fluxes in 
a parallelepiped with arbitrary ratio between edges was 
presented while in Ref. 4 – its particular case in which the 
edges transverse to an incident flux were identical.  

The method of multiple reflections or, more exactly, 
the algorithm proposed by the author can be used to 
calculate the following seven characteristics: the ratio of 
the number of photons leaving the scattering medium 
through each of six sides to the total number of photons 
entering the scattering medium as well as the portion of 
the absorbed photons provided that the absorption takes 
place during the scattering event. In the particular case of 
parallelepiped of square cross section L

y = Lz and 

medium without absorption the method yields the 
following three characteristics: the portion of photons 
outgoing through a back side I

1
, the portion of photons 

reflected from a face I
2
, and the portion of photons 

outgoing through sides I
3
. These three quantities are 

subject to the obvious relation  
 
 

I
1
 + I

2
 + I

3
 = 1 .  (6) 

 
When providing a theoretical foundation for this 

method, the authors assume in fact that in a scattering 
medium the quantities I

1
(x) and I

2
(x) having a meaning of 

radiation fluxes (5) along the x axis in forward and 
backward directions are described by the two–flux 
approximation, i.e., by the system of equations (3). Then 
for the preset coefficients α′ and β′ and the parallelepiped 
length Lx the elementary formulas representing a solution of 

the system of equations (3) are valid for the fluxes I
1
 and I

2
 

outgoing from the front and back sides, respectively. There 
is no need to reproduce these formulas here.  

It is evident that a photon loss through the 
parallelepiped sides is equivalent to some "effective" 
absorption of the photons moving along the x axis by the 
medium. Therefore, the coefficients α′ and β′ must be 
essentially dependent on the lateral dimensions of the 
parallelepiped L

y and on the shape of the scattering phase 

function p(n′ → n).  
From conditional and vague considerations, when the 

medium was tentatively divided into a system of plates and 
bars and some relations of the particle number balance were 
duscussed in these systems, the author of Ref. 1 concluded 
that the coefficients α′ and β′ could be also found from the 
solution of equations of two–flux approximation (3) in 
which the parameters were the lateral dimensions of the 
parallelepiped L

y and new coefficients α′′ and β′′ determined 

as some integrals of the scattering phase function p(n′ → n). 
All the totality of formulas expressing the coefficients α′, β′, 
α′′, and β′′ in terms of the lateral dimensions of the 
parallelepiped L

y and the scattering phase function together 

with the standard formulas for the solution of equations of 
two–flux approximation (3) formed the algorithm of the 
method of multiple reflections.  

Note that to obtain the solutions of equation (3) the 
authors of the method often used an iterative expansion 
which had a physical meaning of multiple reflections of 
photons from the layers of scattering medium. This fact 
explains the name of this method. However, such solutions 
can be easily obtained by standard methods with 
corresponding boundary conditions or radiation sources 
placed inside of the scattering medium, because from the 
mathematical point of view the system of equations (3) is a 
trivial system of differential equations with constant 
coefficients.  

Hence in my opinion, the method of multiple 
reflections is nothing but a modification of the two–flux 
approximation developed by the authors for a scattering 
medium in the form of a parallelepiped when the 
radiation is incident normally on it.  

 
2. ACCURACY OF THE METHOD  

 
It seems that the authors of the method try to apply 

their calculations to as many practical problems as 
possible showing little concern for the validity of the 
method, estimate of its accuracy, and limits of its 
applicability. In those cases in which the accuracy was 
discussed in their papers they usually demonstrated a very 
good agreement with the results obtained by more 
regorous methods.  

To compensate for this deficiency, I carried out the 
calculations by the algorithm described in Ref. 4 and 
compared the calculated results with the datae obtained 
by the Monte Carlo (MC) method by Davies in Ref. 8. 
Note that the authors of the method of multiple 
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reflections (MR) often referred to this paper to compare 
the results of their calculations.  

I used the formulas of the method of multiple 
reflections4 for the simplest case of isotropic scattering in a 
medium without absorption. Instead of geometric 
parameters of the parallelepiped Lx and Ly = Lz, I used 

more suitable parameters, namely, the longitudinal (in the 
direction of incident radiation) optical thickness τ

x and the 

transverse optical thickness τy  

 

τx = α Lx ,  τy = α Ly .  

 

TABLE I.   
 

 τ
y 

τx 0.1 1 10 100 500 

 MC MR MC MR MC MR MC MR MC MR
 I

1
 92 92 – – – – – – – – 

 0.1 I
2
 2 2 – – – – – – – – 

 I
3
 6 6 – – – – – – – – 

            

 I
1
 38 44 45 47 62 60 65 66 67 67 

 1 I
2
 2 9 13 11 30 26 34 32 33 33 

 I
3
 60 47 42 42 8 14 1 2 0 0 

            

 I
1
 – – 0 0 2 2 12 12 13 16 

 10 I
2
 – – 13 14 50 43 81 74 85 81 

 I
3
 – – 87 86 48 55 7 14 2 3 

            

 I
1
 – – 0 0 0 0 1 0 1 0 

100 I
2
 – – 13 14 50 43 88 77 95 89 

 I
3
 – – 87 86 50 57 11 23 4 11 

 I
1
 – – 0 0 0 0 1 0 1 0 

200 I
2
 – – 13 14 50 43 88 77 95 89 

 I
3
 – – 87 86 50 57 11 23 4 11 

 
The values of I

1
, I

2
, and I

3
 obtained from the formulas 

of the method of multiple reflections for indicated 
dimensions of parallelepiped are presented in Table I in the 
right columns (MR). Here the numbers I

1
, I

2
, and I

3
 having 

the meanings of portions of the total number of photons are 
given in percent for clarity of representation. Before 
tabulating, the quantities I

1
, I

2
, and I

3
, calculated from the 

formulas derived in Ref. 4, were rounded off with an error 
of not more than 1%, given that the condition of 
normalization (6) was satisfied.  

The results of the Davies calculations by the Monte 
Carlo method of the same quantities I

1
, I

2
, and I

3
 were 

presented in Ref. 8 in the form of nomograms. In the left 
columns of Table I (MC) I present the quantities retrieved 
from these nomograms also with an error of not more than 
1%. The dashes in the squares of the table point to the fact 
that it was impossible to retrieve from the nomograms all 
the three quantities with satisfactory accuracy.  

The Davies data can be assumed correct in comparison 
with the method of multiple reflections. For clarity of 
representation of the accuracy of the method of multiple 
reflections I calculated the systematic rms errors from the 
following formula:  
 

ηi = 
⏐I

i′ – Ii⏐

I
i′

⋅100% ,  

 

where Ii' are the data obtained by the Monte Carlo method 

and Ii are the results obtained by the method of multiple 

reflections. The rms errors are tabulated in Table II.  
 
TABLE II.  
 

τx τy 

 0.1 1 10 100 500 
 η

1
 0 – – – – 

 0.1 η
2
 0 – – – – 

 η
3
 0 – – – – 

        

 η
1
 16 4 3 2 0 

 1 η
2
 350 15 13 6 0 

 η
3
 22 0 75 100 0 

       

 η
1
 – 0 0 0 23 

 10 η
2
 – 8 14 9 5 

 η
3
 – 1 15 100 50 

        

 η
1
 – 0 0 100 100 

100 η
2
 – 8 14 12 6 

 η
3
 – 1 14 109 175 

       

 η
1
 – 0 0 100 100 

200 η
2
 – 1 14 12 6 

 η
3
 – 1 14 109 175 

 
Comparing the data of Tables I and II, it can be 

concluded that the rms errors of the formulas of the method 
of multiple reflections are, on the average, about 10% when 
the quantities I

i are sufficiently large. For small values of 

fluxes Ii the method of multiple reflections gives the results 

which differ from the exact values by two or three times.  
 

3. FEASIBILITY OF THE METHOD  
 
Feasibility of the method of multiple reflections is of 

great importance. At the first glance, the main barrier to 
the application of this method in practice is the geometry of 
scattering medium –– parallelepiped. It is hardly possible 
to develop an analogous and at the same time sufficiently 
simple algorithm for scattering media of different geometry.  

But there is another much more important obstacle to 
the practical application of this method lying in the fact 
that these three quantities I

1
, I

2
, and I

3
 are of no practical 

significance.  
To prove this statement let us turn to Fig. 1, in which 

the scattering medium is shown by the parallelepiped A. 
The question arises: what measured values correspond to the 
three quantities I

1
, I

2
, and I

3
? Since the quantities Ii are 

the radiation fluxes, they can be measured by a detector 
being close to the scattering medium and covering some side 
of the parallelepiped. If the detector size is less than the 
parallelepiped dimensions, the same result can be obtained 
by scanning the side of the parallelepiped A.  
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FIG. 1.  

 
Now let us imagine the parallelepiped B enclosing 

the parallelepiped A and having much larger dimensions 
and carry out the same measurements for the sides of the 
parallelepiped B. Photons leaving the surface of the 
scattering medium (parallelepiped A) can leave any point 
of the surface A and move in any direction. It can be seen 
from the figure that the photon fluxes moving through 
the sides of the parallelepiped B will differ from the 
previous quantities Ii. It is clear that the method of 

multiple reflections cannot estimate these new quantities 
I i
" which will depend on the distance to the scattering 

medium and dimensions of the parallelepiped B.  
It is difficult to imagine a situation in which the 

measurements of fluxes close to the scattering medium rather 
than at some distance from it are necessary. For example, 
calculations of multiply scattered radiation in scattering media 
in the form of parallelepiped were carried out by the Monte 
Carlo method to estimate the transmission of the solar 
radiation by cumulus clouds.8,9 Irradiation of each cloud by 
the neighboring clouds was also considered in Ref. 9. The 
quantities Ii obtained by the method of multiple reflections 

are inapplicable because here it is necessary to take into 
account at least the distance between the clouds.  

As to an individual cloud, in this case the photon fluxes 
through the planes x = const located before the scattering 
medium or after it are of practical significance. These  

constants which are referred to as the transmission coefficient 
κ
1
 and reflection coefficient κ

2
 satisfy the relation  

 
κ
1
 + κ

2
 = 1 .  

 
The fluxes I

i obtained by the method of multiple 

reflections are very uncertainly related to these coefficients. 
Let us consider, for example, a cube of the scattering medium 
with the optical thicknesses τx = τy = 1. According to Table I, 

42% of photons leave this cube through its sides. The method 
of multiple reflections leaves arbitrariness in the distribution 
of 42% of photons between the transmission κ

1
 and reflection 

κ
2
 coefficients.  

Thus, the feasibility of the method of multiple reflections 
is highly problematic.  

 
REFERENCES  

 
1. B.A. Savel'ev, "Method of multiple reflections in problems 
of optical radiative transfer in media with uniformly 
distributed sources", VINITI, No. 547–78, Moscow, 1978, 
52 pp.  
2. B.V. Goryachev, M.V. Kabanov, and B.A. Savel'ev, Atm. 
Opt. 3, No. 2, 125–132 (1990).  
3. B.V. Goryachev, M.V. Kabanov, and B.A. Savel'ev, Atm. 
Opt. 4, No. 8, 581–586 (1991).  
4. B.V. Goryachev, M.V. Kabanov, S.B. Mogil'nitskii, et al., 
Atm. Opt. 4, No. 8, 587–588 (1991).  
5. V.I. Klyatskin, Stochastic Equations and Waves in 
Randomly Inhomogeneous Media (Nauka, Moscow, 1980), 
336 pp.  
6. A. Isimaru, Propagation and Scattering of Waves in 
Randomly Inhomogeneous Media, Vol. 1 [Russian 
translation] (Mir, Moscow, 1981), 280 pp.  

7. E′ .P. Zege, A.P. Ivanov, and I.L. Katsev, Image Transfer 
through Scattering Medium (Nauka i Tekhnika, Minsk, 
1985), 327 pp.  
8. R. Davies, J. Atmos. Sci. 35, No. 9, 1712–1725 (1978). 
9. M. Aida, J. Quant. Spectrosc. Radiat. Transfer 17, No. 3, 
303–310 (1977). 
 
 

 


