
B.V. Goryachev et al. Vol. 6,  No. 5 /May  1993/ Atmos. Oceanic Opt.  367 
 

0235-6880/93/05  367-03  $02.00  © 1993 Institute of Atmospheric Optics 
 

ON THE FLUX METHODS IN THEORY OF RADIATIVE TRANSFER 
 

B.V. Goryachev, M.V. Kabanov, S.B.Mogil'nitskii, and B.A.Savel'ev 
 

Design and Engineering Institute "Optika", Tomsk 
S.M. Kirov Polytechnic University, Tomsk 

Received July 26, 1991 
 

Some aspects of the use of flux methods for solving the problems of radiative 
transfer in scattering media are discussed. The accuracy of the multiple reflection 
method and its practical implementations are considered.  

 
From Editorial Board 
 
The discussion about the essence of the multiple 

reflection method was initiated to a certain extent by the 
Editorial Board of this Journal, and it is self–evident that the 
reader himself can judge the arguments of the parties. 

It is likely that it makes sense to recall the essence 
of the problem. In the opinion of A. Borovoi, 
manipulations with the one–dimensional radiative 
transfer equation can be associated only with the two–
flux approximation. The authors of the method of 
multiple reflections insist on larger contribution treating 
their proposal as an heuristic method appealing to 
physical reasoning. 

The positive results of this discussion are 
undoubtedly confirmed by new estimates of the accuracy 
of this method (true, item 3 of Sec. 3 of this paper looks 
somewhat strange: if some doubts are cast upon the 
reliability of the data of numerical calculations performed 
by the opponent, then why not to recalculate these 
data?). It has been found that some nontrivial 
contingencies may arise when this method is implemented 
for the solution of specific problems. 

 
1. INTRODUCTION 

 
At present numerical methods of calculation of 

radiation fluxes in bounded scattering volumes are 
fundamental, but they need rather long machine time.1 
For solving such problems in real time, analytic methods 
are developed, for instance, the FA method2 and 
modernized Eddington δ–method.3 The basic problem in 
the development of such methods is the correct 
formulation of fundamental equations and the 
corresponding formulation of boundary conditions. The 
solution of these equations with necessary approximations 
is a subject of mathematical physics and does not need to 
address often to physical processes of radiative transfer.  

In the development of the multiple reflection (MR) 
method the most important problem is the construction of 
such a model of radiative transfer in spatially bounded 
scattering media (SBSM) which allows us to solve the 
problem of radiative transfer using simple and exact 
solutions for the one–dimensional medium. In this case 
the one–dimensional medium represents a part of the 
model of radiative transfer in the SBSM rather than a 
description of some real physical object. On further 
construction of the model a combination of three one–
dimensional media oriented in perpendicular directions 
provides the solution of the problem of radiative transfer 
in the SBSM.  

The basis of such a combination is the six–flux 
representation of scattering phase function,4 which can be 
used to write down the transfer equation in the form5  
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Thus, the problem is reduced to the solution of 
Eq. (1) rather than the two–flux system of equations as 
Borovoi6 argues. However, the solution procedure proposed 
in Ref. 5 has insufficient accuracy for the calculations of 
radiation fluxes in scattering media with absorption, 
whereas the asymptotes of the MR method allow us to reach 
an error of no more than 1.5–2% (see Ref. 7).  

It should also be added that the six–flux 
representation of scattering phase function permits one to 
obtain a one–to–one correspondence between the 
parameters of a medium and coefficients of Eq. (1). The 
derived solution can be conveniently used for real–time 
calculations of integral radiation fluxes coming from a 
bounded volume of a scattering medium. Such calculations 
were performed in modeling the radiation balance of 
atmosphere. Great interest in this problem (calculation of 
integral fluxes) in the special literature8,9 is verification of 
this thesis. The MR method is also applicable in the case of 
broken clouds.10  

 
2. THE TWO–FLUX APPROXIMATION 

 
When considering the flux methods, the analogy to 

the two–flux method is drawn because they use the system 
of equations 
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which is the particular case of Eq. (1), where I is the 
chosen direction and α′ and β′ are the coefficients 
determined by the parameters of the medium.11 In this case, 
as was pointed out in Ref. 6, the key problem of the two–
flux approximation is the determination of the coefficients 
α′ and β′ rather than the solution of the system of equations 
(2). Sufficiently large number of papers is devoted to this 
problem (see Refs. 11 and 12), in which the relation of the 
coefficients α′ and β′ to the parameters of the medium is 
found by a semiempirical method while the MR method 
permits one to establish a one–to–one correspondence 
between the parameters of the medium and radiation. 
Moreover, the MR method permits one to take into account 
the transverse dimensions of the medium what is most 
important in the experimental study. Hence, despite this 
method is similar in appearance to the two–flux method, 
the model of radiative transfer in the MR method is 
constructed in such a manner that it would be better to say 
about the six–flux approximation, i.e., the balance of  
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radiation fluxes is considered in three pendicular directions. 
But the MR method method also differs from the six–flux 
method because it permits one to calculate the radiative 
transfer in a bounded volume.  

 
3. THE ACCURACY OF THE MR METHOD 

 
When analyzing the accuracy of the MR method by 

way of comparison6 of the MR and the Monte Carlo 
methods (MC), consideration must be given to the 
following points:  

1. The error cannot be calculated formally for signals 
of different levels. For instance, if the reflection is 99.99% 
and the transmission is 0.01%, than the error in determining 
the transmission can be very large because the signal 
variations caused by statistical error of the standard method 
(in this case it is the MC method) exceeds the signal level.  

2. The reliability of the data presented in Table I of 
Ref. 6 must be tested. For instance, when the longitudinal 
optical thickness is 100 and 200, the transmission 
determined by the standard method is about 1% (see 
Ref. 2), what is physically impossible. Nevertheless, the 
conclusion has been drawn that the error of the MR method 
is 100%. Therefore, the conclusions about the accuracy of 
the method cannot be drawn based on such comparisons.  

3. We think that the larger is the optical thickness, 
the smaller must be the discrepancy. But it can be seen 
from Table II of Ref. 6 that the error varies irregularly. 
Such an irregularity can be explained only by random 
factors (such, for instance, as reading of graphic information 
from the curves drawn on a logarithmic scale).  

4. The problem of the adequacy for the construction of 
the model of photons leaving the medium is more difficult 
in the MC and MR method (in Ref. 2 this problem was left 
unexplained). The errors can be also introduced as a result 
of different geometry.  

5. It should be noted that the MR method yields good 
results at large optical thicknesses what is confirmed by 
comparison of the asymptotic results obtained by the MR 
method with the data of the exact solution (in asymptote) 
reported in Ref. 7.  

Based on these facts we can disprove the opinion of 
Borovoi6 about the inconsistency of the MR method. 

 
4. PRACTICAL IMPLEMENTATION OF THE MR 

METHOD 

 
This method is most promising for real–time 

calculation of radiation balance and interpretation of 
experimental data, especially of model measurements, when 
spatial boundedness of the medium must be considered. In 
addition, the MR method yields the lateral intensity 
distribution dI/dτ

x (see Ref. 13). The analogy in 

appearance with the two–flux approximation leads to the 
possibility of asserting that the MR method is inapplicable 
for the description of the object in the form of a pile of 
plates, bars, etc., because in this case other physical 
phenomena6 must be also taken into account. But the MR 
method is inapplicable for the description of such objects, 
and multiple reflections are used only for vivid derivation of 
the transfer equation. In addition, this method allows one 
to solve efficiently other problems, for example, to calculate 
the radiation fluxes in the scattering medium bounded by 
reflecting surfaces.14  

When elaborating the MR method, the use of the 
model medium in the form of a parallelepiped is determined 
by the standard choice of boundary conditions and 
mathematical apparatus for the solution of the problem; 
moreover, going to the medium of arbitrary geometry  

presents no problems. The use of the integral radiation 
characteristics in flux methods11 is although not a serious 
problem in practical implementation of this method. 
Moreover, the MR method provides a possibility to 
determine seven components of radiation balance in the 
volume of scattering medium (in the particular case of 
conservative symmetrical medium there are only three such 
components). For comprehensive study of the angular 
distribution of scattered radiation brightness in scattering 
volume one can use n–flux methods,15 however, two– or 
six–flux approximations suffice for the most part of 
practical problems.  

Experimental determination of integral characteristics 
of radiation scattered by volume of a medium is an ordinary 
problem and the subject matter of many works in 
photometry.16  

The measurement of the radiation flux Φ is based on 

the trivial relation Φ = ⌡⌠
4π

 Idω. Practically this problem is 

solved with the help of a photometric sphere (for small 
volumes of the medium) or by scanning the scattering 
object. In so doing a receiver can scan the volume 
boundary, or a scanning aperture can vary.  

A comparison of theoretical and experimental results 
allows us to make a conclusion that the flux methods 
describe fairly well the real processes of radiative transfer.11  

As a concrete example of practical implementation of 
the MR method, we give the method of determining a 
quantum survival probability Λ in highly turbid media.  

To determine Λ, the coefficient R
∞
 must be measured. 

In doing so the dependence of R
∞
 on the transverse optical 

dimensions must be taken into account. As our computations 
for Λ = 0.9 show, R

∞
 is independent of the transverse 

optical dimensions already at τy, τz ≥ 10. The decrease of 

quantum survival probability results in smaller optical 
dimensions. Consequently, as Λ changes, the transverse 
optical dimensions must be carefully monitored for weakly 
absorbing media.  

 

 
FIG. 1. 

 
Elaborated method of determining Λ was 

experimentally checked for model suspensions of polystyrene 
latex with the particle size d = 0.08 μm. Collimated  
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monochromatic radiation flux (λ = 0.63 μm) was used to 
obtain Rayleigh scattering described by integral parameters 
of the scattering phase function η ≈ β = 0.2 and μ = 0.15 
(see Ref. 7). Measurement was carried out by scanning a 
face of a cell with a light quide connected to a 

photomultiplier FE′ U–79. The accuracy of measuring Λ was 
determined by the error in measuring the light flux reflected 
by a layer of investigated medium in the case of isotropic 
and Rayleigh scattering while for unisotropic scattering – 
by the accuracy of determining the parameters η, β, and μ.  

The other practical implementation of the MR method 
is the case of diffuse reflection of radiation from spatially 
bounded disperse media. The method allows one to calculate 
the reflection coefficients for different samples. These 
coefficients strongly depend on the transverse optical 
dimensions of a medium.  

In conclusion it should be noted that the MR method 
is the basis for critical analysis of many experimental and 
theoretical works in the field of radiative transfer in 
scattering media available to us. This method initiates the 
development of new calculational methods taking into 
account the spatial boundedness of the medium and devices 
harnessing this method.  
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