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A stable and reliable algorithm is constructed for computing the internal field of 
a two–layer spherical particle with homogeneous core and radially inhomogeneous 
shell whose inhomogeneity profile is described by a power–law function. This model is 
intended for calculating the interaction of the electromagnetic wave with fractal 
clusters in the framework of the asymptotic cluster model.  

 

In recent years the great interest has been expressed in 
optics of fractal clusters, specifically in calculation of 
optical characteristics of soot algomerates formed in the 
atmosphere by a stochastic association of primordial 
subparticles – combustion products – into larger friable 
formations of micron size (see, for example, Refs. 1–4). 
Construction of an adequate model of the object describing 
optical properties of fractals is a problem of principle. A 
so–called asymptotic model of a cluster in the form of a 
two–layer sphere with homogeneous core and radially 
inhomogeneous shell was proposed in Ref. 5. Such a model 
makes it possible to describe more or less adequately the 
actual dependence of the refractive index of the shell on the 
radial coordinate; on the other hand, the diffraction 
problem has an exact solution in terms of special functions 
given that the profile of the refractive index is chosen 
properly. A technique for calculating the characteristics of 
light scattering by such objects was described in Ref. 6 and 
the calculated results were presented in Refs. 7 and 8.  

However, knowledge of the field distribution inside 
the cluster is required for a closer study of an interaction 
between electromagnetic wave and fractal clusters. In 
particular, the local field parameters calculated within the 
scope of this model can facilitate a solution of the problem 
on the supposed sharp decrease of nonlinearity threshold.9 
They also determine the regions of the most active 
interaction.  

The model of the radially inhomogeneous sphere has 
drawn interest in the calculation of heating of soot 
structures formed as a result of combustion of coal particles 
in gaseous phase10,11 and of haloes surrounding the 
evaporating particles. Moreover, knowledge of the internal 
field provides a description of scattering patterns of 
inhomogeneous and anisotropic particles as well as of 
particles with nonlinear properties in the framework of the 
integral equation method12 in which the potential of the 
radially inhomogeneous particle is used as a seed potential 
of interaction.  

Mathematical difficulties (both analytical and 
computational) are a barrier to a widespread use of the 
model; that is why the papers devoted to the internal field 
of the radially inhomogeneous particles are practically 
lacking (except Ref. 13). The goal of the present paper is 
construction of a stable and reliable algorithm for 
calculating the internal field of the above–indicated variety 
of two–layer particles with radially inhomogeneous profile 
of the refractive index of a sufficiently general type.  

Let us particularize the statement of the problem. A 

plane monochromatic (ei ωt) electromagnetic wave (with 
wavelength λ and amplitude E

0
 propagating in the positive  

direction along the z axis, whose electric vector oscillates 
about the x axis) is incident on a particle having a spherical 
core of relative radius ρ

1
 = 2πr

1
/λ (r

1
 is the radius of the 

core) with the constant complex refractive index m
1
 and a 

concentric shell of relative radius ρ
2
 = 2πr

2
/λ (r

2
 is the 

external radius of the particle), whose refractive index 
m

2
(ρ) depends on the relative distance ρ from the center of 

the sphere. Vector wave functions M
( j)

e
o
nl

(mρ) and N
( j)

e
o
nl

(mρ) 

(l = 1, 2, ..., n = 0, 1, ..., l) are known to be the solutions of 
the vector wave equations11 for homogeneous region. Here the 
functions with the superscript j = 1 are regular at the origin of 
coordinate, and the functions with j = 3 satisfy the condition 
of radiation in the far zone of diffraction. The subscripts e and 
o denote even and odd functions, respectively. The expansions 
of electric and magnetic fields inside the homogeneous core 
(E

1
, H

1
) and outside of the core (E

3
, H

3
) for the chosen 

geometry of the problem have the form14  
 

E
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E
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where εl = (– i)l (2l + 1)/l(l + 1); ε

0
 and μ

0
 are the dielectric 

constant and the magnetic permeability; unimportant factor 

E
0
ei ω t is omitted from here on; and, α

1l, β
1l, α

4l, and β
4l are 

the amplitude coefficients.  
More complicated is the problem for inhomogeneous 

region of the shell (ρ
1
 < ρ < ρ

2
). As shown in Ref. 12, 

elementary vector solutions to the wave equation  
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are the vector functions  
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and to the wave equation  
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are the wave functions  
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The following notation is used here: l, m, and n are 

the angular vector wave functions,12 primes denote 
differentiation with respect to ρ, the meaning of the 
superscript j remains the same as earlier, and the radial 
functions Wl and Vl are the solutions of the linear 

differential equations of the second order  
 

Wl
′′(ρ) – 

d
dρ

 [ ]ln m
2
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′(ρ) + [ ]m
2
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2
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Expansion of the field inside the shell (E

2
, H

2
) must 

include not only regular (j = 1) but also irregular (j = 3) 
functions.  

In accordance with this  
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where α

2l, α
3l, β

2l, and β
3l are the amplitude coefficients of 

the field inside the shell. In order to determine the 
amplitude coefficients entering into Eqs. (1) and (8), the 
boundary conditions that the tangential components of 
fields are continuous at two interfaces should be used. As a 
result, we obtain two systems of linear algebraic equations 
for the amplitude coefficients. Solving these systems for the 
amplitude coefficients of the shell (later on we restrict 
ourselves to this case alone), as a result of quite  

cumbersome transformations we obtain the following 
expressions:  
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where  
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Dl(z) and Gl(z) are the logarithmic derivatives of the 

Riccati–Bessel ψl(z) and Riccati–Hankel ζl(z) functions, 

respectively,  
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In the derivation of expressions (9)–(13), the Wronskians15  
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2
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were used. Let us turn back to expansions (8) for the field 
inside the inhomogeneous shell. Using the following 
designations:  
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we may write the components of the field E
2
 in spherical 

coordinates (r, θ, ϕ) in the form  
 

E
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where Ql(θ) and Sl(θ) are the angular functions expressed 

in terms of the associated Legendre polynomials 

Q
l
(θ) = P(1)

l
(cosθ)/sinθ and Sl(θ) = dP(1)

l
(cosθ)/dθ. 

Dimensionless ratio |E|2 at a fixed point of the particle to 
the incident wave power E

0
2 is an actually computable 

quantity. Since the factor E
0
 was omitted earlier, the ratio 

might be assumed equal to  
 

B = E
2 r E2 r*  + E

2ϕ
 E

2ϕ
*  +E

2θ
 E

2θ
* . (16) 

 
At this point the construction of the formal procedure 

for the solution of the problem on the external field of a 
two–layer particle with homogeneous core and radially 
inhomogeneous shell is completed. However, the question of 
radial functions Wl and Vl remains to be solved. The 

concrete form of radial equations (6)–(7) and, 
consequently, of their solutions Wl and Vl depends on a 

choice of the refractive index profile m
2
(ρ) in the shell. As 

shown in Ref. 12, the radial equations are solvable 
analytically only for a very limited set of profiles m

2
(ρ). In 

this case the solutions are expressed, as a rule, in terms of 
hypergeometrical functions, which are inconvenient for 
computations. The only actual profile of m

2
(ρ), which 

allows one to avoid the hypergeometrical functions, is the 
power–law function  

 

m
2
(ρ) = A ρb , (17) 

 

where A and b are the arbitrary complex constants. The 
additional merit of the profile given by Eq. (17) is that it 
enables one to describe adequately the peculiarities of the 
optical constants at the periphery of a cluster.7,8 After 
substituting profile (17) into radial equations (6)–(7), we 
obtain differential equations with the following cylindrical 
functions as solutions:  
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⎠
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where J is the Bessel function, H(2) is the Hankel function 
of the second kind (superscript (2) is omitted from here on). 
The argument X and subscripts of these functions are  
 

X(ρ) = 

ρ m
2
(ρ)

b + 1 , μl = 

2 l + 1
2(b + 1) ,  νl = 

[l(l + 1) + (b + 1/2)2]1/2

b + 1 . 

 (19) 
It is evident that for homogeneous shell (b = 0) the functions 
Vl and Wl are transformed into the Riccati–Bessel and  

Riccati–Hankel functions to within the unimportant 
constant factor.

 
For the inhomogeneous shell the subscripts 

μl and νl are complex in the general case. By substituting 

solution (18) into expressions (14) for the coefficients after 
simple transformations we obtain   
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where  
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Ml and Ml

–
 are described by expressions (11) with 
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coefficients τl and tl
–

 take the form   
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; 

 

and Dνl,μl
 and Gνl,μl

 are the logarithmic derivatives of the 

functions Jνl,μl
 and Hνl,μl

 , respectively.  

Thus, in order to calculate the internal field of the 
shell, four groups of functions should be determined: 
(1) functions ζl(ρ

2
) and logarithmic derivatives Gl(ρ

2
) and 

Dl(m1
ρ

2
), (2) angular functions Ql and Sl, (3) functions 

Jνl 
, logarithmic derivatives Dνl

 , and Gνl
 , and ratios Kνl

 

for fixed arguments X
1
 and X

2
 and running X, and 

(4) analogous functions for a set of the subscripts μl. The 

calculation of functions of the first two groups is not 
difficult. In order to assess the number of terms L sufficient 
for convergence of series (15), the relation L = fLW can be 

used, where LW is the assessment of the number of terms of 

the Mie series according to Ref. 16 and f is the empirical 
coefficient exceeding unity. The appearance of f is due to  
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the fact that the convergence of the series in the amplitude 
coefficients of the internal field is somewhat slower than 
that in the external field coefficients, for which the 
assessment LW was first introduced. Our experience in the 

calculation of the internal field shows that f ∼ 1.2. A set of 
the logarithmic derivatives Dl(m1

ρ
1
) (l = L, L –1, ..., 1) 

was calculated by a backward recursion. The starting terms 
of recursions were obtained by the expansion in a continued 
fraction.17 The functions ζl(ρ

2
) and Cl(ρ

2
) were calculated 

by a conventional forward recursion.14 The angular 
functions Ql(θ) and Sl(θ) were calculated in a similar way.  

Much more difficult problem is the calculation of the 
functions of the third and forth groups. As can be seen from 
Eq. (19), construction of the recursion in l is impossible in 
this case; therefore, the independent calculation for every 
l = 1, 2, ..., L should be made. In order to calculate 
simultaneously the Bessel function Jν(z) with complex 

subscript ν, logarithmic derivatives Dν and Gν, and ratio 

Kν, we must somehow modify the method proposed in 

Refs. 18 and 19. Since this method was described in detail 
in Ref. 6, here we restrict our consideration to some 
comments. The basis of the method is the Gegenbauer 
addition theorem, which makes it possible to obtain Jν(z) and 

Dν(z) simultaneously. However, the simultaneous calculation 

of the Neumann function Yν(z) proposed in Ref. 19 turned 

out to be numerically unstable. For this reason we used 
another approach. As is well known, the expansion of the ratio 
Dl(z) in a continued fraction is very stable numerically.17 A 

slight modification allows us to use this expansion for complex 
subscripts and to calculate Dν(z). Furthermore, with the help 

of a combination of the known expressions for Wronskians we 
obtain Gν(z) and Kν(z) from Jν(z), Dν(z), and D

–ν(z). The 

developed algorithm was implemented on a BE′ SM–6 
computer. Test calculations showed an agreement with the 
results obtained for degenerated cases. The results of 
calculation of the internal field of fractals based on the 
developed algorithm will be presented in future papers.  

In conclusion the authors would like to acknowledge 
V. N. Kuz'min for useful advice in discussions of the paper 
and I. L. Katseva for her help in programming.  
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