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The trends in the behavior of the optical transfer function and point spread 
function of a scattering layer caused by changing its position and optical and 
geometric thicknesses are numerically studied in the small–angle approximation. A 
specific feature of the solution method is that the Fourier transform of a small–angle 
scattering phase function is represented in the form of an autocorrelation function of 
particle shadow. This allows the relation of optical properties of the medium to its 
disperse composition to be determined.  

 

1. INTRODUCTION  
 

Much attention is currently given to the solution of 
inverse problems for optics of disperse media in the case of 
multiple light scattering in connection with the problem of 
sounding of dense aerosol formations. The efficiency of the 
solution of such problems depends strongly on the structure 
and bulk of measurement information as well as on the 
experimental configuration and viewing geometry. One of 
the promising directions in this area is based on the small–
angle approximation of radiative transfer theory. This 
approximation was used in Ref. 1 to construct the 
algorithms for reconstructing a disperse composition of the 
scattering media from the data on the angular distribution 
of a multiply scattered plane wave.  

The use of narrow laser beams in laser radar techniques 
initiated the study of the irradiance distribution over the 
beam cross section as a function of the optical thickness and 
the microstructural parameters of a scattering medium. The 
point spread function (PSF) plays an important role in the 
determination of the irradiance produced by a light field.2,3  

The goal of the present paper is to study the basic trends 
in the behavior of the PSF and its Fourier transform, the 
optical transfer function (OTF), in the small–angle 
approximation as functions of the disperse structure of the 
medium characterized by the particle size distribution function 
and particle concentration field which is uniquely related to 
the spatial distribution of the extinction coefficient. The 
problems under discussion have not yet been studied 
adequately in the papers concerned with the analysis of the 
PSF in the scattering media since these papers deal primarily 
with the solution of the radiative transfer equation (RTE) in 
which the explicit dependences on the disperse characteristics 
of a medium are lacking. This is especially true in regard to 
the representation of the scattering phase function which in 
the small-angle approximation is usually described by the 
rapidly damped exponential function a2

 exp (– a θ) (Ref. 4), 
the Gaussian function a exp (– a θ2) (Ref. 5), and the function 
a θ–1

 exp (– a θ) (Ref. 2), where θ is the scattering angle.  
The results obtained in this paper may be useful in the 

design of the experiments and estimation of the information 
content of the inverse problems in reconstructing macro– and 
microstructural parameters of the disperse media in the case of 
multiple light scattering.  

The problem under study may also be of interest in the 
optical signal transfer through dense scattering media and the  

estimation of the effect of structural properties of the medium 
on the parameters of transmitted signal (optical 
communication and transfer of images through turbid media).  

 
2. INITIAL RELATIONS  

 
To solve the formulated problem, we start from 

representation of the Fourier transform of the small–angle 
scattering phase function in the form of the autocorrelation 
function of a mean particle shadow6  
 

ϕ(ρ)

 

= ⌡⌠
r/2

R

 G(ρ/2 r) f( r) dr ,  0 ≤ ρ ≤ 2R , (1) 

where f(r) = s(r)/S, s(r) = π r2n(r), and n(r) is the 
distribution of number density of particles over size; 

S = ⌡⌠
0

R

 s(r) dr is the total geometric cross section of 

particles in unit volume of the scattering medium; 
G(ρ/2 r) is the autocorrelation coefficient of the shadow 
from the spherical particle of radius r,  
 

G(t) = 
⎩
⎨
⎧2π–1[ ]arccos (

 
t) – t(1 – t2)1/2 ,  t ≤ 1,

0,  t > 1.
 (2) 

 

Expression (1) describes the Fraunhofer diffraction when an 
ensemble of particles is replaced by a system of independent 
opaque plane screens, which is allowable for κr |m–1| . 1, 
where m is the complex refractive index of particles, 
κ = 2π/λ, and λ is the wavelength.  

Let the radiation be incident on a medium in the 
positive direction of the OZ axis and the volume 
coefficients of extinction ε(z) and scattering σ(z) be 
functions of the coordinate z. Then with allowance for the 
fact that relations ε = 2S and σ = S are valid in the case of 
scattering by large particles (r . λ), the OTF of the 
medium F(ν) in the small–angle approximation is expressed 
immediately in terms of the geometric parameters of the 
particle in the form7  
 

F(ν) = exp { } – τ( z) + g(ν)  , (3) 
 

where  
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τ ( z) = ⌡⌠
0

z

ε( t) dt , (4) 

g(ν) = ⌡⌠
0

z

S( z – t)ϕ(ν t/κ) dt , (5) 

 

ν is the spatial frequency, and τ is the optical depth of the 
medium in the layer [0, z]. The PSF of the medium E(r) is 
the Hankel transform of the function F(ν) given by Eq. (3):  
 

E( r) = 
1
2π ⌡⌠

0

∞

ν J
0
(ν r) F(ν) dν . (6) 

 

In addition to the PSF E(r) describing the spatial 
distribution of the irradiance over the plane z = const, we 
also consider the radiant flux P(r) which flows through a 
circular area centered on the OZ axis and oriented 
perpendicular to the direction of incident radiation 
propagation  
 

P(r) = r⌡⌠
0

∞

J
1
(r ν) F(ν) dν . (7) 

 

The PSF E(r) is expressed in terms of the derivative of P(r)  
 

E(r) = 
1

2π r 
dP(r)

dr  . (8) 

 

The optical characteristics of the medium F(ν), E(r), 
and P(r) can be represented as a sum of the transmitted 
attenuated (denoted by the subscript 0) and scattered (sc) 
radiations  
 

F(ν) = F
0
 + F

sc
(ν) , (9) 

 

E(r) = E
0
(r) + E

sc
(r) , (10) 

 

P(r) = P
0
(r) + P

sc
(r) , (11) 

where  

F
0
 = P

0
 = e–τ , (12) 

F
sc
(ν) = exp { }–τ + g(ν)  – exp (–τ) . (13) 

 

For the transmitted radiation E
0
(r) = σ(r)e–τ, the 

functions E
sc
(r) and P

sc
(r) are found from expressions 

analogous to Eqs. (6) and (7) with F(ν) replaced by F
sc
(ν). 

It should be noted that everywhere, with the exception of 
the point r = 0, E

sc
(r) = E(r). As r → ∞, formula (11) 

transforms into the relation for net fluxes flowing through 
the plane z = const  
 
B(τ) = B

0
 + B

sc
 = exp (–τ/2) , 

 

B
0
(τ) = e–τ

 ,  B
sc
(τ) = exp (–τ/2)– exp (–τ) . (14) 

 
3. QUALITATIVE ANALYSIS OF THE  

OPTICAL CHARACTERISTICS  
 
When radiation propagates through the monodisperse 

media, the OTF and PSF of two media with different 
particle radii R

1
 and R

2
 satisfy the relations of similarity  

 
F

2
(ν) = F

1
(ν/q), E

2
( r) = q2

 E
1
(q r) , (15) 

 

where q = R
2
/R

1
. Relations (15) can be generalized to 

polydisperse ensembles of particles which have analogous 
functions of distribution f(η) over the relative radius 
η = r/R

e with R replaced by the effective radius Re for 

which we have assumed, e.g., the rms radius, etc.  
It follows from the property of monotony of the 

function F(ν) and relation (15) that F
2
(ν) > F

1
(ν) when 

Re2 > Re1, i.e., with an increase of the effective radius of 

scatterers, broadening of the OTF of the medium occurs. In 
the near–axis region where the function E(r) decreases 

monotonically, for R
e2 > Re1, the inequality is fulfilled  

 

E
sc,2

(r)

E
sc,2

(0) < 
E

sc,1
(r)

E
sc,1

(0) , (16) 

 

which indicates that the transverse scale of a light beam 
decreases with increase of the effective radius of scatterers.  

Starting from the properties of the function G(t) given 
by Eq. (2) and nonnegative character of the extinction 
coefficient ε(z), it can be shown for the function g(ν) given 
by Eq. (5) that  
 

0 ≤ g(ν) ≤ τ/2 ,  g′(ν) ≤ 0 ,  g′′(ν) ≥ 0 , (17) 
 

from which follow the analogous properties of the OTF 
F(ν) of the medium given by Eq. (3):  

  

0 < F(ν) ≤ F(0) ,  F′(ν) ≤ 0 ,  F″(ν) ≥ 0 , (18) 
 

where F(0) = B(τ) defines the net radiative flux flowing 
through the plane z = const. If we additionally assume that 
the scattering layer is at the distance H from the 
observation point, then g(ν) = 0 and hence F

sc
(ν) = 0 for 

ν > ν
max

 = 2κR/H. Thus the OTF of the medium F(ν) in 

the small–angle approximation is a bounded monotonically 
decreasing function being convex downwards.  

The width of the function F
sc
(ν) can be judged from 

the position of the point of intersection of the abscissa and a 
tangent to the curve F

sc
(ν) passing through zero, which is 

defined by the relation  
 

ν* = μ/|g′(0)| . (19) 
 

The quantity ν* also determines the frequency at which the 
OTF F

sc
(ν) is by a factor of e smaller than its maximum 

value for exponential approximation of F
sc
(ν):  

 

F
sc
(ν) = F

sc
(0) exp (–ν/ν*) . (20) 

 

The coefficient μ specifies the relative contribution of 
scattered radiation to the net flux and monotonically 
increases from 0 to 1 as a function of the optical depth τ 
 

μ(τ) = Bsc/B = 1 – exp(–τ/2) , (21) 
 

where B and B
sc
 are found from Eq. (14). Following Ref. 7, 

the quantity g′(0) is  
 

 ⎢g′(0)⎢ = 
Lτ

π κRe 
 , (22) 

 

where L is the distance from the observation point to the 
center of gravity of the scattering layer (L = z/2 when 
ε = const) and Re is the effective size of scatterers found 

from the formula  
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R
e
 = 
⎣
⎢
⎡

⎦
⎥
⎤

⌡⌠
0

R

f( r) r–1 dr

–1

 . (23) 

 

Using Eqs. (19)–(23), we finally obtain the estimate of the 
frequency ν*  
 

ν* = ν
1
ω(τ) , (24) 

where  

ν
1
 = 

π κRe

2 L
 . (25) 

 

The quantity ν
1
 specifies the OTF width of the medium 

F
sc
(ν) in the single–scattering approximation and the factor 

 

ω(τ) = 
1 – exp(–τ/2)

τ/2
 (26) 

 

is the monotonically decreasing function within the region 

of its variation 0 > ω(τ) ≤ 1. In this case ω(τ) → 1 and 
ν* → ν

1
 as τ → 0. The function ω(τ) describes the effect of 

multiple scattering on the width of the frequency spectrum 
F

sc
(ν). Thus, as seen from Eqs. (24)–(26), the OTF width 

decreases monotonically with increase of optical density of 
the medium. The frequency ν* is proportional to the 
effective radius of particles R

e given by Eq. (23) and 

decreases with increase of the distance to the layer L.  
As an example, Table I gives the values of ν* obtained 

from formula (19) by way of numerical estimate of the 
derivative of the function g(ν) given by Eq. (5) for zero value 
of the argument at the wavelength λ = 0.55 μm for different 
positions of the scattering layer which was modelled by a 
Gaussian curve with the mean distance z

m
 and variance σ 

2 for 

the following fixed values of the parameters of the medium: 
Re = 10 μm, τ = 1, and σ = 0.5 km.  

 

TABLE I. 
 

zm, km ν*, km–1
 r*, km  

  ε = 0.1 ε = 0.2 
2 17.6 0.565 0.278 
5 28.36 0.351 0.173 
8 70.96 0.140 0.069 

 

The spatial scale of the PSF E(r) can be characterized 
by the radius of the area r* on which the given fraction of 
the scattered light flux (1 – ε) is incident  

 

P
sc( r*)

B
sc

 ≡ 
2π

Fsc(0)
 ⌡⌠

0

r*

 
 Fsc( r) r dr = (1 – ε) . (27) 

 

With the exponential approximation of the OTF F
sc
(ν) 

given by Eq. (20), the solution r* of Eq. (27) has the form  
 

r* = 1/ν*(1 / ε2 – 1)1/2 , (28) 
 

where ν* is found from Eq. (19). For aforementioned 
example the estimates r* of the width of the PSF E(r) by 
formula (28) with ε = 0.1 and 0.2 are given in Table I.  

 
4. RESULTS OF NUMERICAL MODELING  

 
In the numerical experiments the scattering layer along 

the path of the length z = 10 km was modeled by normal 
distribution with the mean distance 2 ≤ z

m
 ≤ 8 km, variance  

σ 2 (0.1 ≤ σ ≤ 1), and optical depth 1 ≤ τ ≤ 8. The dependences 
considered below were obtained at the wavelength 
λ = 0.55 μm for the effective radius of particles R

e = 10 μm. 

Transformation to analogous dependences at other wavelengths 
for other effective radii of particles is accomplished following 
the similarity relations given by formulas (15).  

Depicted in Fig. 1a are the dependences of the PSF E(r) 
obtained for different positions of the scattering layer, 
determined by different values of z

m
, and fixed values of the 

parameters τ and σ. As seen from Fig. 1a, the behavior of the 
function E(r) is strongly affected by the spatial structure of 
the extinction coefficient profile ε(z). As follows from Fig. 1b, 
in which the normalized dependences E

sc
(r)/E

sc
(0) are shown, 

the spatial redistribution of the light flux over extended area 
takes place as the scattering layer moves away from the 
observation point (i.e., with decrease of z

m
). Since in this case 

the net flux flowing through the cross section B(τ) given by 
Eq. (14) remains unchanged, the beam broadening causes the 
decrease of irradiance in the near–axis region (see Fig. 1a).  

The results of calculation of the normalized fluxes of 
scattered radiation P

sc
(r)/B

sc
 depicted in Fig. 2 correspond to 

a family of dependences of the PSF E(r) shown in Figs. 1a 
and b. As seen from Fig. 2 and Table I, the dimensions of the 
beam cross section, within which a specific portion of light 
energy propagates, are in satisfactory agreement with the 
estimates of r* by formulas (27) and (28).  
 

 

 

FIG. 1. Irradiance distribution E(r) (a) and the ratio 
E

sc
(r)/E

sc
(0) (b) in the plane z = 10 km for different 

positions of the scattering layer and constant values of its 
geometric thickness (σ = 0.5 km) and optical depth 
(τ = 1). z

m
 = 2 (1), 5 (2), and 8 km (3).  
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FIG. 2. The ratio of the flux of scattered radiation P
sc
(r) 

flowing through the circular area of radius r to the net 
scattered flux B

sc
 for different positions of the layer. 

z
m
 = 2 (1), 5 (2), and 8 km (3). The remaining 

parameters of the layer are the same as in Fig. 1.  
 

Figure 3 illustrates the effect of the scattering layer 
thickness, for fixed position of its center, on the behavior of 
the PSF E(r). Curves 1–3 in Fig. 3 correspond to the 
values of the parameters σ = 0.1, 0.5, and 1.0 km at 
z
m
 = 5 km. The functions E(r) depicted in Fig. 3 have 

identical effective widths, and distinctive features are 
manifested in the near–axis region (see Fig. 3b) and on the 
periphery of the beam. The intensification of irradiance at 
the beam center with increase of the layer thickness is 
accounted for by the increase of the cutoff frequency ν

max
 at 

which the OTF vanishes as well as by the properties of 
monotony and convexity of the function F

sc
(ν). The value 

of the frequency ν
max

 is inversly proportional to the distance 

H from the observation point to the nearest boundary of the 
layer which is displaced towards the observation point with 
increase of the layer thickness.  
 

 
 

FIG. 3. Irradiance distribution at different geometric 
thicknesses of the layer for fixed position of its center 
(z

m
 = 5 km and τ = 1). σ = 0.1 (1), 0.5 (2), and 1 km (3).  

 

The dependence of the PSF E(r) on the beam 
periphery (see Fig. 3b) exhibits periodic oscillations which 
are smoothed out with increase of geometric extension of 
the layer. These oscillations are engendered by the effect of 
the scattering phase function, the essence of which is as  

follows. Using the expansion of the exponent exp g(ν) in a 
series and considering a linear term as well as taking into 
account the relation between the shadow correlation 
function ϕ(ρ) and the small–angle scattering phase function 
x(θ) (see Ref. 1), we obtain the expressions for the OTF 

F
1
(ν) = e–τg(ν) and the PSF of the medium in the single 

scattering approximation  
 

E
1
( r) = 

1
4π e

–τ ⌡⌠
0

z

 
 σ(z – t) x(r/ t) t–2

 dt . (29) 

 

Formula (29) has a simple physical sense. The 
irradiance at the point r is formed by contributions of the 
volume elements, located along the OZ axis at different 
distances t from the observation plane, which scatter the 
radiation within the directions θ = r/t. With decrease of 
the geometric thickness of the scattering layer, when the 
optical depth τ remains unchanged, we obtain in the limit  
 

E
1
( r) = 

τ e–τ

8π L2
 x(r/L)

 , (30) 

 

where L is the distance from an infinitely thin layer to the 
observation point. As known, in the particular case of the 
medium consisting of particles of the same radius R,  
x(θ) = 4 J

1
2(κ R θ)/θ2, where J

1
(y) is the first order Bessel 

function. Zeros yi of the Bessel function J
1
(y) correspond to 

the positions of the minima  
 

ri(r) = 
L

κ Re
 yi (31) 

 

in curves 1 and 2 in Fig. 3a. An increase in the geometric 
thickness of the layer causes the minima of the scattering 
phase function x(r/t) in integrand (29) with different t to 
be shifted relative to each other. This results in smoothing 
out the observed oscillations in the irradiance distribution 
E(r). The oscillations of the function E

1
(r) are also 

smoothed out due to averaging of the scattering phase 
function x(θ) over the particle size spectrum. Of particular 
attention in Fig. 3a are the points r

j g 196, 272, and 342 m 

in the curves E(r), located between the corresponding 
extrema of the Bessel function J

1
(y), in the vicinity of 

which the irradiance remains practically unchanged under 
variations in the thickness of the scattering layer. These 
regions, naturally, contain no information about the 
geometric thickness of the layer.  

In conclusion we consider the effect of the optical 
depth τ on the behavior of the PSF of the medium. The net 
flux of the scattered radiation flowing through the plane 
z = const is described by the function B

sc
(τ) given by 

Eq. (14) which reaches maximum of 0.25 at 
τ = 2ln2 g 1.39, while the component of the flux formed 
due to the kth order scattering attains its maximum at 
τ = κ. In particular, the flux of the singly scattered 
radiation is maximum at τ = 1. The relative contribution of 
the flux of the singly scattered radiation is determined from 
the expression  
 

B
1
(τ)

Bsc(τ)
 = 

τ/2
exp(τ/2) – 1

 = δ
1
(τ) . (32) 

 

The function δ
1
(τ) equals 1 at τ = 0 and decreases 

monotonically with τ increase down to δ
1
(τ) = 0.5 at 

τ g 2.48. Hence, the contribution of the singly scattered  
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radiation to the net scattered flux, even decreasing for 
τ > 1, remains dominant up to the optical thickness 
τ g 2.48, and only at larger values of τ the contribution of 
multiple scattering exceeds that caused by single scattering.  

The relative contribution of scattered radiation of 
different multiplicity also changes in the beam cross section 
in going from its center to periphery. Let us consider the 
effect of density of the medium on spatial distribution of 
irradiance over the plane z = const. Depicted in Fig. 4 are 
normalized dependences of the PSF E

sc
(r)/E

sc
(0) for the 

Gaussian profile of the extinction coefficient with the 
parameters z

m
 = 5 and σ = 0.5 km for three values of the 

optical depths τ = 1, 5, and 8 (curves 1–3, respectively). 
The flux of the scattered energy is redistributed over an 
extended area with simultaneous decrease of the net 

scattered flux (for τ > 1.39 in accordance with Eq. (14)) 
due to the increase of contribution from multiple scattering 
with τ. In this case the relative contribution of multiply 
scattered radiation increases in going from the center of the 
beam to its edge. At small optical depths, when the 
contribution of singly scattered light is significant 
(δ

1
(1) g 0.77), the oscillations engendered by the 

aforementioned effect of scattering phase function are 
observed in the behavior of the function E

sc
(r) (curve 1, 

Fig. 4) on the periphery of the beam. These oscillations are 
smoothed out when the multiply scattered radiation 
component is added (curves 2 and 3 in Fig. 4).  
 

 
 

FIG. 4. Normalized distribution of irradiance 
E

sc
(r)/E

sc
(0) over the beam cross section for the Gaussian 

profile of the extinction coefficient with the parameters 
z
m
 = 5 km and σ = 0.5 km as a function of the optical 

depth of the layer τ = 1 (1), 5 (2), and 8 (3).  
 
Figure 5 shows the plots of normalized fluxes 

P
sc
(r)/B

sc
 at different optical depths of the medium. 

Curves 1–4 are for τ = 1, 2, 5, and 8. The values of the 
remaining parameters of the medium are the same as in 
Fig. 4. In the curves of Fig. 5 it is possible to separate out a 
central region with rapid increase of the value of the 
scattered flux P

sc
(r) transforming into the saturation region 

with smooth tendency of P
sc
(r) to B

sc
. The estimates r* of 

the width of the PSF E
sc
(r) at different optical depths τ 

listed in Table II were obtained from the data of Fig. 5 
according to Eq. (27) for ε = 0.1. Table II also gives the 
values of the function c/ω(τ) which approximates the 
dependence of r* on τ, where c = const and ω(τ) is  

determined by formula (26). The rms error of approximation 
is about 4%.  

 
TABLE II. 

 

τ 1 2 5 8 

r∗, km 0.246 0.315 0.492 0.738 

c/ω(τ)  0.231 0.291 0.499 0.747 
 

 
 

FIG. 5. The ratio of the flux of scattered radiation P
sc
(r) 

flowing through the circular area of radius r to the net 
scattered flux B

sc
(r) for different optical depths of the 

layer τ = 1 (1), 2 (2), 5 (3), and 8 (4). The remaining 
parameters of the layer are the same as in Fig. 4.  

 
Figure 6 depicts a family of dependences 

h(τ, r) = P
sc
(r)/P

0
 which describes the behavior of the 

ratio of the scattered radiation flux P
sc
(r) to the unscattered 

flux P
0
 at τ = 1, 2, 3, and 5 (curves 1–4, respectively). It 

is clear that as r → ∞, the function h(τ, r) tends to the limit 

h(τ) = B
sc
/B

0
 = eτ/2–1. The function h(τ) is monotonically 

increasing and unbounded, i.e., with increase of the optical 
depth τ the contribution of the scattered radiation to the 
net flux increases while the contribution of the flux of 
directly transmitted radiation decreases monotonically, and 
at the instant both fluxes become equal (h(τ) = 1 at 
τ g 1.39), the net flux of the scattered radiation reaches its 
maximum (B

sc
 = 0.25).  

 

 
 

FIG. 6. The ratio of the scattered radiation flux P
sc
(r) 

flowing through the circular area of radius r to the 
unscattered flux P

0
 for different optical depths of the 

layer τ = 1 (1), 2 (2), 3 (3), and 5 (4). The remaining 
parameters of the layer are the same as in Figs. 4 and 5.  
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The behavior of the ratio of the scattered and unscattered 
radiation fluxes h(τ, r) flowing through a bounded area of 
radius r is analogous – it increases monotonically with τ. 
Figure 6 allows one to estimate the radius r

1
 of the region in 

which the fluxes of scattered P
sc
(r) and unscattered P

0
 

radiations become equal. The value of r
1
 is found from the 

solution of the equation h(τ, r) = 1. When τ = 1, the solution 
of this equation does not exist (curve 1 of Fig. 1 does not 
intersect the straight line h = 1). When τ = 2ln2, the fluxes 
become equal only at infinity as r → ∞. As the optical depth 
increases further, the parameter under study decreases 
monotonically down to r

1
 = 105 m at τ = 2 and r

1
 = 25 m at 

τ = 8.  
Comparing the results shown in Figs. 1 and 4 we see 

that the effects engendered by multiple scattering, which 
intensify with increase of the optical depth τ, may alter the 
behavior of the irradiance E(r) in the plane z = const 
(resulting in beam broadening and oscillation smoothing) and 
are qualitatively similar to those engendered by the 
peculiarities of the spatial structure of the extinction 
coefficient (position of the layer and its thickness).  

 
5. CONCLUSION 

 

In conclusion three principal factors can be 
distinguished which affect the behavior of the OTF and 
PSF of the scattering medium. First, it is the microstructure 
of the medium which determines the form of the scattering 
phase function. Second, it is a set of the parameters which 
describe the spatial distribution of scatterer concentration, 
i.e., the structure of the medium on a macroscale. And 
third, it is the optical depth of the medium which is the 
governing factor in the formation of the multiply scattered 
radiation background.  

In accordance with the foregoing factors, the basic 
regularities in the transformation of the PSF and OTF have 
been found and their effective scales have been estimated. 
The results of numerical modeling serve as the basis for 
estimating the effect of the parameters of disperse media on 
the energy characteristics of optical signals in problems of 
sounding, communication, vision, etc.  

It has been shown that the factors of different origin 
such as, e.g., the particle radius and position of the 
scattering layer or distance to the layer and its optical 
depth have analogous effects on the structure of the 
parameters under study. Therefore, it should be taken 
into account that cooperative manifestation of these 
factors in the optical experiments makes their 
interpretation difficult.  

 
REFERENCES 

 
1. N.I. Vagin and V.V. Veretennikov, Izv. Akad. Nauk 
SSSR, Fiz. Atmos. Okeana 25, No. 7, 723–731 (1989).  
2. D.M. Bravo–Zhivotovskii, L.S. Dolin, A.G. Luchinin, 
and V.A. Savel'ev, Izv. Akad. Nauk SSSR, Fiz. Atmos. 
Okeana 5, No. 2, 160–167 (1969).  
3. E.P. Zege, A.P. Ivanov, and I.L. Katsev, Image Transfer 
through a Scattering Medium (Nauka i Tekhnika, Minsk, 
1985), 327 pp.  
4. L.S. Dolin, Izv. Vyssh. Uchebn. Zaved., Radiofiz. 9, 
No. 1, 61–67 (1966).  
5. W.G. Tam and A. Zardecki, J. Opt. Soc. Am. 69, No. 1, 
68–70 (1979).  
6. V.F. Belov, A.G. Borovoi, N.I. Vagin, and S.N. Volkov, 
Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 20, No. 3, 
323–327 (1984).  
7. V.V. Veretennikov, Opt. Atmos. Okeana 6, No. 4, 250–
254 (1993).  
 

 


