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In this paper we present our study of fluctuations of intensity of light scattered 
by particles of smoke plumes occurring in the atmosphere due to mixing of particles by 
large scale turbulent eddies. To do this we have calculated the mean intensity, 
relative variance, and temporal scale of fluctuations of intensity of scattered radiation 
in the focal plane of a receiving telescope. The results obtained enable a priori choice 
of the exposure time to be done for taking optical images of smoke plumes with a 
desired degree of averaging. 

 
In Ref. 1 some possibilities of determining the power 

of industrial pollution emissions into the atmosphere and 
the particles concentration in smoke plumes from the 
measurements of intensity of backscattered optical radiation 
are considered. However, this approach does not take into 
account that the concentration of scattering particles, and, 
therefore, the intensity of received optical signal are random 
functions of coordinates and time due to the atmospheric 
turbulence. An analysis of the intensity fluctuations of 
optical radiation scattered by the particles of smoke plume 
can be useful both for estimating the exposure time for 
taking an averaged plume image and obtaining additional 
information about the object sounded. 

In the paper we analyze mean distribution, variance, 
and temporal correlation scale of the intensity of optical 
radiation scattered by particles of a smoke plume and 
collected by a telescope in the image plane. 

Problem statement. The optical beam propagating 
along the z axis of a Cartesian coordinate system {z′, x′, y′} 
is assumed to be incident on the smoke plume of aerosol 
particles moving along the y axis due to wind. The 
radiation backscattered is recorded in the image plane of a 
telescope. According to Ref. 1 the variation of intensity of 
scattered radiation along the coordinate x in the telescope 
focal plane is described by the formula 

U(x, t)
 
= q

G
 {1 – exp[– 2τ(x, t)]}, (1) 

 

where q
G
 is the geometric factor determined by the 

parameters of receiving–transmitting system and by 
scattering properties of smoke plume particles; 
 

τ(x, t) = σ
eff ⌡⌠

–∞

+∞
 

 
dz′ r

⎝
⎛

⎠
⎞z′, 

L
F

t

 x, y, t  (2) 

 

is the optical thickness of the smoke plume along the z′ 
axis; σ

eff
 is the sum of the scattering cross section, σ

s
, and 

the absorption one, σ
a
, for the case of small particles 

(r
0
 � λ/2, where r

0
 is the effective radius of particles, λ is 

the wavelength of radiation) while σ
eff

 is the absorption 

cross section only in the case of large particles (r
0
 � λ/2) 

(see Ref. 1); ρ is the concentration of particles in the smoke 
plume at the point {z′, x′, y′} and at time t; y is the distance 
from the smoke source, y′ = 0, to the plane y′ = y, from  

which the scattered optical radiation comes; and, L is the 
distance from the receiving telescope with the focal length 
F

t
 to the smoke plume axis. 

The concentration ρ is a complicated function of space 
and time. Random spatiotemporal variations of ρ cause the 
intensity fluctuations U. In the subsequent discussion we 
consider the situation when the main contribution to the 
intensity fluctuations comes from large–scale turbulent 
eddies inducing the random displacements of the smoke 
plume, as a whole. We consider the scheme of sounding of 
the plant stack smoke plume, for example, so as it is 
observed from the side (the plume image along the vertical 
axis x). If we assume that the smoke coming out of the 
stack is not overheated and has no its own velocity, so that 
the smoke particles are entirely entrained by wind6 we can 
use the Gaussian plume model for the concentration ρ (see 
Refs. 2–4) 
 

ρ(z′, x′, y, t) = 

M
πVa

z 
a
x

 exp
⎩
⎨
⎧

⎭
⎬
⎫

– 

[z′ – z∼(y, t)]2

a2
z

 – 

[x′ – x∼(y, t)]2

a2
x

,(3) 

 

where V is the mean velocity of wind whose direction is 
parallel to the Y axis and y is the distance from the stack 
mouth to the observation plane {z′, x′} along the plume axis; 
 

M = V ⌡⌠
  –∞

  +∞

 ⌡⌠ dz′ dx′ ρ(z′, x′, y, t) (4) 

 

is the power of the emission5; 
 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫z∼(y, t)

x∼(y, t)
 = 

V
M ⌡⌠

  –∞

  +∞

 ⌡⌠ dz′ dx′ { }z′x′  ρ(z′, x′, y, t) (5) 

 
are the coordinates of the centroid of the concentration 
distribution in the plane {z′, x′}; 
 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
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a2

z 

a2
x

 = 
2V
M  ⌡⌠

  –∞

  +∞

 ⌡⌠ dz′ dx′ 
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫(z′ – z∼)2

(x′ – x∼)2
 ρ(z′, x′, y, t) (6) 

 
are the squared effective dimensions of the smoke plume 
along the axes z′ and x′, respectively. 

By substituting Eq. (3) into Eq. (2) and integrating 
we obtain  
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τ(x, t) = 
σ

eff 
M

πVa
x

 exp 
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
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– 
⎣
⎡

⎦
⎤L

F
t

 x – x∼(y, t)  

2

a2
x

 . (7) 

 

Models of plume parameters. In the general case the 
power M and the plume width a

x
 are random functions of 

distance y and time t and, hence, their fluctuations can 
influence the optical thickness of the plume τ(x, t). If 
smoke uniformly flows out from a stack the turbulent 
diffusion of particles along the wind can be neglected when 
estimating M. In this case the power of emission, M, does 
not depend on time and can be written as  
 

M = M(0) exp (– α y/V) , (8) 
 

where M(0) is the power of the emission in the source 
plane; α is the coefficient of concentration reduction due to 
particles interaction with the outer medium and their decay. 
The instant cross section (along the x axis) of the plume can 
be represented as a sum of the effective plume size in the 
source plane a

0
 (a

0
 is determined by the stack diameter) and 

Δx∼(y, t) which is the plume lateral spread caused by the 
diffusion of smoke particles due to the small–scale 
turbulence. It is obvious that if one of the conditions

 
 

a2
0
 � <Δx∼2> = σ2

a
 (9) 

or 

<x∼2> = σ2
x
 � σ2

a
 , (10) 

 

where <...> denotes averaging over an ensemble; σ
a
 is the 

diffuse "instant" plume spread; σ
x

2 is the variance of the 

plume displacements, holds, the main contribution into the 
optical thickness fluctuations comes from random 

displacements x~(y, t). In this case a
x

2 in Eq. (7) may be 

considered as a constant value determined by the relation 
 

a2
x
 = a2

0
 + σ2

a
 . (11) 

 

To estimate σ
x

2 and σ
a

2 we use the formulas obtained in 

Ref. 6: 
 

σ2
x 

= 2σ2
V
 t2

L
 [y/V t

L
 – 1 + exp (– y/V t

L
)] , (12) 

 

σ2
a

 
= σ2

x
 – (σ2

V
 – C

0
 ε2/3

T
 a2/3

0
) t2

L
 [1 – exp (– y/V t

L
)] 2 , (13) 

 

where σ
V

2  and t
L
 are the variance and the Lagrange time 

of correlation of wind velocity vertical component, 
respectively; C

0
 ≈ 0.9; ε

t
 is the rate of turbulent energy 

dissipation. Let us estimate σ
x

2 and σ
a

2 for the case of 

neutral temperature stratification in the atmosphere 
when, according to the theory of the surface–layer 
turbulence,7,8 simple relations can be used: σ 2

V
 = C2

V
 u2

*
, 

V = (u
*
/κ) ln(h/z

0
), ε

T
 = u2

*
 /(κh) , where u

*
 is the 

friction velocity; κ = 0.4 is the Karman constant; C
V
 ≈ 1; 

z
0
 is the underlying surface roughness parameter; and, h 

is the plume height. Using then the relationships for the 
turbulent exchange coefficient which are true for the  

neutral stratification7,8: K
T
 = κ u

*
 h and K

T
 = σ

V

2
 t

L
 and 

equaling their right–hand sides it is possible to obtain the  
Lagrange time of wind velocity vertical component  
t
L
 ≈ 0.4 h/u

*
. Therefore, when h = 30 m, z

0
 = 0.3 m, 

y = 30 m, and a
0 
� 2 m condition (10) is fulfilled. If 

V = 10 m/s and a
0
 = 2 m, then σ

x

2 g 6.1 m, a
x

2 g 6.2 m2, 

and (σ
x
/a

x
 ≈ 1) but for a

0
 = 0.5 m we have σ

x
/a

x
 ≈ 2.  

For the statistical moments of the functional F(x~) the 
following relationships9 can be used: 
 

<F(x~)> = ⌡⌠
–∞

+∞

 dx~ P(x~) F(x~) , (14) 

 

<F(x~
1
) F(x~

2
)> = ⌡⌠

  –∞

  +∞

 ⌡⌠ dx~
1
 dx~

2
 P(x~

1
, x~

2
) F(x~

1
) F(x~

2
) , (15) 

 

where x~
i
 = x~(y, t

i
) is the random plume displacement along 

the vertical axis x′ for the distance y from the pollution 
source at the time t

i
 for which, in the coordinate system 

chosen, <x~
i
> = 0, P(x~) is the one–dimensional probability 

density for the distribution of the random value x~, P(x~
1
, x~

2
) 

is the two–dimensional probability density of the plume 

displacements x~
1
 and x~

2
 at the moments, t

1
 and t

2
. 

The coordinate x is assumed to obey the Gaussian 
distribution law, that is9:  
 

P(x~) = (1/ 2π σ
x
) exp [– x~2/(2σ2

x
)] , (16) 

 

P(x~
1
, x~

2
) = (2π σ2

x
 1 – K 

2
x
)–1

 exp[
 

 
– 

x2
1

 + x2
2

 – 2 K
x
 x~

1
 x~

2

2σ2
x
 (1 – K 

2
x
) ]

 

 

, 

 (17) 
 
where K

x
 = K

x
(t

1
, t

2
) is the temporal correlation coefficient 

of the plume displacements. In the case of stationary 
turbulence it depends on the difference t

1
 – t

2
 only. 

The correlation coefficient K
x
 is determined by motion 

of two particles in the field of turbulence, which reach the 
observation plane at different times, t

1
 and t

2
. For the 

distances y � t
L 

V it can be taken that the vertical velocity 

component V
~

x
(0, t) of a particle flying out of a stack at 

time t does not change as the particle is transferred by the 
mean flow. Hence, for the vertical displacement of the 
particle we can use the formula  

 

x~(y, t) = V
~

x
(0, t) y/V . (18) 

 
In accordance with Eq. (18) the variance and the 

correlation coefficient of plume displacements, as a whole, 
are determined by the following expressions: 
 

σ2
x
 = <x~2(y, t)> = (σ2

V
 /V 

2) y2 , (19) 
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K
x
(t

1
 – t

2
) = 

<x~(y, t
1
) x~(y, t

2
)>

σ2
x

 = K
V

 (t
1
 – t

2
) , (20) 

 

where σ
V

2  = <V
~

x

2(0, t)> is the variance and K
V
(t

1
 – t

2
) = 

= <V
~

x
(0, t

1
) V

~
x
(0, t

2
)>/σ

V

2  is the correlation coefficient of 

Euler wind velocity. 
As follows from Eq. (20) under the condition of 

"frozen" turbulence (y � t
L
 V) the integral temporal scale 

of the displacements correlation, 
 

t
x
 = ⌡⌠

0

∞

 dt K
x
(t) (21) 

 
is determined by the Euler integral temporal scale t

E
 

completely. The above–mentioned example of evaluation of 

parameters σ
x

2 and a
x

2 shows that the condition (y � t
L
 V) 

is quite realizable. 
Intensity statistics of scattered radiation in the focal  

plane of a receiving telescope. Mean intensity. By 
substituting Eq. (7) into Eq. (1) and using Eq. (14) we 
obtain for the mean intensity <U>: 
 

<U(x)> = q
ã
 <1 – exp (– 2τ(x, t))> = 

 

= q
G ⎣
⎡ 
 

1 – ⌡⌠
–∞

+∞

 dx~ P(x~) ⎦
⎤ 

 
exp (– 2τ(x, x~))  . (22) 

 

In the case of small optical thickness (τ � 1) the 

exponent in Eq. (22) can be expanded into the Taylor series 
that in turn, can be truncated at the second term, i.e., 

exp(2τ) ≈ 1 – 2τ. As a result after integration over x~ with 
the use of Eq. (16), we find 
 

<U(x)> = 
2τ

0
 q

G

1 + 2σ2
x
/a2

x

 exp 
⎩
⎨
⎧

⎭
⎬
⎫

– 
x2

1 + 2σ2
x
/a2

x

 , (23) 

where 

τ
0
 = 

σ
eff

 M

πV a
x

 (24) 

 
is the optical thickness in the absence of random 
displacements of the plume when x = 0, 
X = (L/F

t
)/(x/a

x
) is the normalized coordinate in the 

focal plane of receiving telescope. It is clear from Eq. (23) 
that the mean intensity distribution along the x axis is of 
Gaussian form. The blurring of plume for the long–exposure 
measurements of intensity distribution U(x) increases with 
the increasing ratio σ

x

2/a
x

2. 

For large optical thickness (τ
0
 � 1) and under the 

condition that σ
x

2 � a
x

2 mean intensity at the plume image 

axis <U(0)> is close to the factor g
G
 and the distribution 

<U(x)> is not the Gaussian one, obviously. 
Figure 1 presents the results of numerical calculations 

by formula (22) of the mean intensity distribution 
normalized by the factor q

G
 for different values of the 

parameters τ
0
 and σ

x
/a

x
. 

 
 

FIG. 1. Mean intensity distribution: 1, 1′, and 
1′′) σ

x
/a

x
 = 0; 2, 2′, and 2′′) σ

x
/a

x
 = 1; 3, 3′, and 

3′′) σ
x
/a

x
 = 5; 1, 2, and 3) τ

0
 = 5; 1′, 2′, and 3′) τ

0
 = 1; 

and 1′′, 2′′, and 3′′) τ
0
 = 0.1. 

 
Relative variance of intensity. From Eqs. (1) and (7) 

we have for the relative variance σ
U

2  = <U 
2(0)>/<U(0)>2 – 1 

 

σ 2
U
 = 

<exp(– 4τ(0, t))> – <exp(– 2τ(0, t))>2

[1 – <exp(– 2τ(0, t))>]2
 , (25) 

 
where in accordance with Eq.

 
(14) 

<exp(– n2τ(0, t))> = ⌡⌠
–∞

+∞

 dx~ P(x~) exp (– n2τ(0, x~)) , (26) 

n = 1, 2 . 
The asymptotic formulas can be obtained from 

Eqs. (25), (26), and (14) under the condition that σ
x

2 � a
x

2: 

 
σ 2

U
 = 2 f

1
(τ

0
) (σ4

x
/a4

x
) , (27) 

 
where 
 

f
1
(τ

0
) = [2τ

0
 exp(– 2τ

0
)/(1 – exp(– 2τ

0
))]2 , (28) 

 

and for σ
x

2 
� a

x

2: 

σ 2
U

 
= f

2
(τ

0
) (σ

x
/a

x
) – 1 , (29) 

 

where the function f
2
 for τ

0
 � exp(2 σ

x

2/a
x

2) is determined 

by the expression 
 

2

3/2 k-10 0
2 0

1 1

(-1) (2 ) (-1) (2 )
( )=2 (2 -1) 

! !
.

k k k k

k k

f
k kk k

∞ ∞

= =

⎛ ⎞τ τ
⎜ ⎟τ
⎜ ⎟
⎝ ⎠

∑ ∑/ (30) 

 
Functions f

1
(τ

0
) and f

2
(τ

0
) are presented in Fig. 2. It is 

clear that the relative variance σ
U

2  decreases with the 

increasing optical thickness τ
0
. This effect is more distinct 

under the condition σ
x

2 � a
x

2, as it follows from the 

asymptotic formulas, for small displacements of a plume. 
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FIG. 2. Functions f
1
 (curve 1) and f

2
 (curve 2). 

 
Figure 3 illustrates the variance σ

U

2  as a function of 

the ratio σ
x
/a

x
 (a) and optical thickness τ

0
 (b). As it 

follows from the presented data, starting from the values 
σ

x
/a

x
 = 2 the magnitude σ

U

2  can exceed unity. 
 

 
FIG. 3. The relative variance σ

U

2  as a function of the ratio 

σ
x
/a

x 
(a) and optical thickness of a plume τ

0 
(b): 

1) τ
0
 = 0.1; 2) τ

0
 = 1; 3) τ

0
 = 5; 1′) σ

x
/a

x
 = 1; 2′) σ

x
/a

x
 = 2; 

3′) σ
x
/a

x
 = 5. 

 
Temporal scale of the intensity correlation. For the 

temporal correlation coefficient K
U
(t

1
, t

1
) = <[U(t

1
) – 

– <U>] [U(t
2
) – <U>]/[<U 

2> – <U>2]> in the case of 

x = 0 we have from Eqs. (1) and (7) 
 
K

U
(t

1
, t

2
) =  

= 
<exp(– 2τ(0, t

1
)) exp(– 2τ(0, t

2
))> – <exp(– 2τ)>2

<exp(– 4τ)> – <exp(– 2τ)>2  ,  (31) 

 
where, in accordance with Eq. (17), 

<exp(– 2τ(0, t
1
)) exp(– 2τ(0, t

2
))> =⌡⌠

  –∞

  +∞

 ⌡⌠ dx~
1
 dx~

2
 P(x~

1
, x~

2
) × 

×
 
exp(– 2τ(0, x~

1
)) exp(– 2τ(0, x~

2
)) . (32) 

 

Taking into account the stationarity of the process 
under study we obtain the temporal scale of intensity 
correlation, by analogy with Eq. (21), in the form 

t
U
 = ⌡⌠

0

∞

 dt K
U
(t) . (33) 

 
Using the expression 
 
K

x
(t) = exp(– t/t

x
) , (34) 

 
for the correlation coefficient of plume displacements we 
obtain from Eqs. (31)–(34), (16), (17), and (26) the 
following asymptotic formulas: 
 
t
U
 = t

x
/2 (35) 

 

under the condition σ
x

2 � a
x

2 and  

 

t
U
 = t

x
 

ln2

⎣
⎡

⎦
⎤f

2
(τ

0
) 
σ

x

a
x

 – 1

 (36) 

 

when σ
x

2 � a
x

2. 

Figure 4 presents the results of numerical calculations 
by Eqs. (33) and (31) with the use of model (34) for the 
dependence of t

U
 on the ratio σx/a

x
 and the parameter τ

0
. 

It is clear from Fig. 4 that the temporal scale of intensity 
correlation decreases with the plume displacement increase 
(with increasing ratio σx/a

x
). For this, as it follows from 

Eqs. (36) and (29), the scale t
U
 is inversely proportional to 

the relative variance σ
U

2  for σ
x

2/a
x

2 � 1. 

The measurement time T needed for obtaining the 
mean value <U> with a required relative error ε is 
determined by the known6,7 relation  
 
T = 2 t

U
 σ2

U
/ε2 . (37) 

 

As follows from Eqs. (27), (29), and (35)–(37) under the 

condition that σ
x

2 � a
x

2, the time of averaging T can be 

written as 
 

T = (f
1
(τ

0
)/ε2) (σ4

x
/a4

x
) t

x
 , (38) 

 

and when σ
x

2 � a
x

2, the time T is completely determined, at 

a given error ε by the time of plume displacements 
correlation, t

x
  

 

T = t
x
 2 ln2/ε2 . (39) 

 

Let the initial characteristics of the pollution source be 
a

0
 = 0.5 m, h = 30 m, and τ

0
 = 3 and neutral stratification 

of the atmosphere with the parameters z
0
 = 0.3 m, 

y
0
 = 30 m, V = 10 m/s, and t

x
 = t

E
 = 3 c10 occur. Then in 

order to obtain an average smoke plume image near its axis 
with the error ε = 0.1 for the above conditions at 30 m from 
the source, it is necessary to carry out measurements during 
about three minutes. When the averaging time is shorter, 
the spectral brightness of a plume image can fluctuate and 
the variance of fluctuations can reach in the limit the values 
σ

U

2  = 4, as it follows from the results presented in Fig. 3. 

This should be taken into account when developing a 
technique of determining concentration of particles in 
plumes from remote optical measurements.1,11  
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FIG. 4. The integral scale of intensity fluctuations correlation as a function of σx/a
x
 (a) and τ

0
 (b): 1) τ

0
 = 0.1, 

2) τ
0
 = 1, 3) τ

0
 = 5, 1′) σ

x
/a

x
 = 1,  2′) σ

x
/a

x
 = 3, and 3′) σ

x
/a

x
 = 5. 
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