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The results of numerical calculations of coherence radius of plane and spherical 
waves propagating along slant paths in the turbulent atmosphere are presented for the 
model by M.E. Gracheva and A.S. Gurvich described the vertical dependence of 
structural parameter of atmospheric turbulence. In the case of spherical wave the optical 
radiation distribution in the atmosphere from the top downwards and from the bottom 
upwards and in the case of plane wave – from the top downwards are treated in the 
paper. 

 
A coherence radius is the fundamental parameter of 

optical wave propagating through the randomly 
inhomogeneous medium.1 All the main characteristics of 
optical systems operating in the atmosphere, for example, 
an integral resolution of telescope2 depend on the 
coherence radius. The determining role of this parameter 
is shown in Ref. 3 for analyzing an efficiency of adaptive 
correction of images of objects observed through the 
turbulent atmosphere intended to improve the telescope 
image quality. There also the important role of the 
coherence radius as an image characteristic is noted in the 
general concept of "astroclimate". In particular, for the 
adaptive telescopes with correction of random slopes of 
wave front the coherence radius determines the size of 
isoplanicity area.3 In this paper the results of calculations 
of optical wave coherence radii at the slant paths in the 
turbulent atmosphere are presented. 

It is known1 that when analyzing the formation of 
image of incoherent source observed through the 
randomly inhomogeneous medium the concept of optical 
transfer function (OTF) is introduced. The OTF is 
Fourier transform of intensity distribution over the space 
of optical system image which is created by the point 
source being in the space of object location. It was shown 
in Ref. 2 that the optical transfer function of the 
turbulent atmosphere M(p) coincides with the second–
order mutual coherence function of the optical field for 
"very long" exposures, i.e., 
 

M(p) = Γ
2
(x, ρ+ p) , (1) 

 

where Γ
2
(x, ρ+ p) = <U(x, ρ

1
)U*(x, ρ

2
)> is the second–

order mutual coherence function for the optical field 
U(x, ρ) at the points of {x, ρ

1
} and {x, ρ

2
}; p is the space 

scale; x is the longitudinal coordinate; and, ρ = {y, z} is 
the transverse coordinate relatively to the direction of 
optical wave propagation. 

The optical wave is spherical if it is emitted by the 
point source being inside the layer of the randomly 
inhomogeneous medium or near it. In that case when the 
point source is removed at the long distance from the 
layer of random inhomogeneities (for example, an 
observation of star by the ground–based telescope), the 
wave under study can be considered as the plane wave. 
That is why the calculations were carried out for two 
cases of limiting types of waves: plane and spherical. 

According to Refs. 4 and 5 for the atmospheric 
turbulence with the Kolmogorov spectrum of air refractive 
index fluctuations when satisfying the condition l

0
 < p < L

0
 

(where l
0
 and L

0
 are the inner and outer scale of atmospheric 

turbulence, respectively), the optical transfer function of 
randomly inhomogeneous atmosphere (1) can be represented in 
the form 
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where M(0) is the optical transfer function of turbulent 

atmosphere for p = 0; ρc = (1.45 k2 C 
2

n
 L)–3/5 is the 

coherence radius of optical wave in the turbulent atmosphere; 
k = 2π/λ, λ is the optical wavelength in vacuum; L is the 
propagation path length in the layer of the randomly 

inhomogeneous medium; C 
2

n
 = 

1
L ⌡⌠

0

L

 
 
dx C 

n

2
(h(x)) φ(x) is the 

effective value of structural parameter of atmospheric 

turbulence; C 
2

n
(h(x)) is the altitude profile of structural 

characteristic of atmospheric refractive index; 
h(x) = [x2 + (R

3
 + h

0
)2 + 2x(R

E
 + h

0
) cosθ]1/2 – R

3
 is the 

height of running point of propagation path5; R
E
 is the 

Earth's radius; θ is the zenith angle, θ ∈ [–π/2, π/2]; h
0
 is 

the minimum height of propagation path above the underlying 
surface; φ(x) is the spatial filtering function which determines 
the relative contributions of different sections of propagation 
path to the effective value of atmospheric structural 
parameter. For the plane wave φ(x) = 1. In the case of 
spherical wave if the source is below the observation point 
φ(x) = (x/L)5/3 and if the source is above this point 
φ(x) = (1 – x/L)5/3. The altitude profile of the structural 
characteristic of air refractive index in the atmosphere is based 
on the model proposed in Ref. 6. This model stipulates two 
limiting dependencies: 

(1) for the minimum level of turbulence (the "best" 
conditions) 

 

lg (C 
n

2
 (h) – 5.19⋅10–16–0.00086h) = –18.34 + 0.29⋅10–3 h – 

 

– 2.84⋅10–8 h2 + 7.43 ⋅10–13 h2 ; (3) 
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(2) for the maximum level of turbulence (the "worst" 
conditions) 

 

lg (C 
n

2
 (h) – 9.5⋅10–14–0.00209h) = –14.39 + 0.17⋅10–3 h – 

 

– 3.48⋅10–8 h2 + 9.59 ⋅10–13 h3 ; (4) 
 
when h ∈ [10 m, 20 km]. The height h is in units of 

meters in Eqs. (3) and (4), therefore C 
2

n
(h) is in units of 

m–2/3. Formulas (3) and (4) correspond to the model of 
altitude profile of structural characteristic of air refractive 

index for the wavelength λ = 5⋅10–7 m. For the arbitrary 
optical wavelength it is recommended6 to use the 
estimation 

 

C 
n

2
(h, l) = a(λ) C 

n

2
(h, λ = 5⋅10–7 m) , (5) 

 
where a(λ) is the multiplicative factor allowing for the 

spectral dependence of C 
2

n
 for the whole profile (the 

dependence of a(λ) on h is assumed to be a less order of 
smallness). In the spectral interval, which has no the 
resonant frequencies, the Cauchy formula can be used 
within the good accuracy, i.e., one can consider that 

 
a(λ) = N2(λ) / N2(λ = 5⋅10–7 m) , (6) 
 
where N(λ) = A [1 + B(λ0/λ)2]; A = 273⋅10–6;B = 3⋅1010; 

λ0 = 5⋅10–7 m. 

Thus, to calculate the coherence radius of optical 
wave at the slant paths it is necessary to use Eqs. (2) –
 (6). An analysis of these formulas shows that the 
coherence radius of optical wave ρc depends on initial 

geometry of the wave, zenith angle (θ), path length (L), 
propagation path orientation, level of turbulence, and 
parameters h

0
, λ, and R

E
. In accordance with the 

condition of the problem, as was above–discussed, the 
plane wave is assumed to be propagated from the top 
downwards, and the spherical wave is considered for two 
variants of path orientation: from the top downwards and 
from the bottom upwards. The path length for the case of 
the plane wave equals to length of the entire atmospheric 
column up to the position of receiver of optical radiation. 
For the spherical wave the value of L is chosen within 
the interval from 100 m to 100 km. The zenith angle θ 
varies from 0° (vertical paths) to 90° (horizontal paths) 
for the both cases. The only limiting levels of turbulence 
are considered: minimum and maximum. It is assumed 
that by this way the boundaries of variation range of 
values sought (the coherence radius of optical radiation) 
can be assigned. The minimum height of propagation path 
h

0
 is the height of receiver location when the optical 

wave (plane or spherical) propagates from the top 
downwards and the height of source location when the 
spherical wave propagates from the bottom upwards.  

Let us prescribe the values of h
0
 from 10 m to 

10 km, and perform the calculations at three wavelengths 
of optical radiation for the spherical wave: λ

1
 = 0.5 (the 

area of maximum sensitivity of eye), λ
2
 = 1.06, and 

λ
3
 = 10.6 μm (the wavelengths of most frequently applied 

IR lasers) and for the plane wave at one wavelength: 
λ

1
 = 0.5 μm. The mean Earth's radius R = 6370 km is 

taken as R
E
. 

First let us consider the plane wave propagation 
through the turbulent atmosphere (this case corresponds 
to the observation of star by ground–based telescope), in 
this case from Eq. (2) the following formula for the 
coherence radius can be derived: 

 

ρc, p = [1.45 k2 ⌡⌠
0

∞

 
 
dx C 

n

2
 (h(x))]–3/5 . (7) 

 

 
 
FIG. 1. Plane wave coherence radius in the turbulent 
atmosphere at the slant path for the different heights of the 
observation point h

0
: h

0
 = 10 m (1), 1 km (2), 5 km (3), and 

10 km (4). The "worst" propagation conditions (solid 
curves) and the "best" ones (dashed curves). 
 

Figure 1 shows the results of calculations of the 
plane wave coherence radius by Eq. (7) as a function of 
the zenith angle θ for the different heights h

0
 of a source 

above the underlying surface. Here h
0
 = 10 m, 1, 5, and 

10 km. The results for the "worst" conditions (maximum 
level of turbulence), are shown by solid curves and for 
the "best" conditions – by dashed curves (minimum level 
of turbulence). As is seen from Fig. 1, the dependence of 
ρc, p on the zenith angle θ is monotonic and the greatest 

variations in the coherence radius are observed at θ > 80°. 
The layer of the randomly inhomogeneous medium 
decreases as the height of receiver position above the 
ground increases that leads to the increase in the optical 
wave coherence radius. The plane wave coherence radius 
increases by an order of magnitude as the height h

0
 

increases from 10 m to 10 km, i.e., we can say that the 
principle influence on ρc, p is from the random 

inhomogeneities being near the Earth's surface in the 
layer of 3–5 km thickness. 
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FIG. 2. Spherical wave coherence radius in the turbulent 
atmosphere at the slant path for the different zenith 
angles θ: θ = 0° (1), 60° (2), 80° (3), and 90° (4). The 
"worst" propagation conditions (solid curves) and the 
"best" ones (dashed curves). The radiation source is 
located below the observation point. 

 
Figures 2–5 present the results of calculations of the 

coherence radius for the spherical wave propagating 
through the turbulent atmosphere at the slant paths. The 
same as for the case of plane wave, the results for the 
"worst" conditions are shown by solid curves and for the 
"best" ones – by dashed curves. Three values for the 
coherence radius ρc, s at λ

1
 = 0.5, λ

2
 = 1.06, and 

λ
3
 = 10.6 μm, respectively, are given in Figs. 2–5. 

Figures 2 and 4 correspond to the case when the source is 
positioned below the observation point, while Figs. 3 and 
5 –– above it. The coherence radius ρc, s as a function of 

propagation path length L is presented in Figs. 2 and 3 
for the different zenith angles θ: curves 1–4 are plotted 
at θ = 0°, 60°, 80°, and 90°, respectively. Here h

0 
equals 

to 10 m, in addition, for the case presented in Fig. 2 h
0
 is 

the height of location of optical radiation source, but in 
Fig. 3 h

0
 is the height of observation point. Figures 4 and 

5 show the values of ρc, s at θ = 0° (vertical paths) for 

the different heights of source location (Fig. 4) or 
observation point (Fig. 5) relatively to the underlying 
surface of the Earth: curves 1–4 are for h

0
 = 10 m, 1, 5, 

and 10 km, respectively. 
 

 
 

FIG. 3. The same as in Fig. 2 but the radiation source is 
located above the observation point. 
 

An analysis of the data presented in Fig. 2 shows 
that at λ = 10.6 μm when the source is located on the 
Earth's surface, ρc, s equals to about 1–20 m for 

L = 100 m; 20 cm – 10 m for L = 1 km, and 10 cm –
 5 m for L = 5 km. It is easy to note that decreasing in 
the optical wavelength leads to decreasing in the 
coherence radius. The values of ρc, s increase as the height 

of source location above the ground increases (Fig. 4). An 
analogous effect is observed in the case when the source is 
located above the observation point (Fig. 5). 

For the radiating source positioned high above the 
ground (Figs. 3 and 5), the spherical wave coherence 
radius ρc, s depends on the propagation path length L 

monotonically, ρc ,s decreases with increase of L. 

Moreover, this dependence has a tendency to be 
saturated. Thus, at θ = 0° (vertical paths) the saturation 
occurs at L > 2⋅104 m, at the same time at θ = 90° 
(horizontal paths) – at L g 106 m. In the scheme of a 
lower height of location of spherical wave source the 
dependence of ρc,s on L has one or two minima (Figs. 2 

and 4). The global minimum at θ = 0° under the "worst" 
conditions can be found at L = 6⋅103 m while at 
θ = 90° – at L = 5⋅104 m (Fig. 2).  
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FIG. 4. Spherical wave coherence radius in the turbulent 
atmosphere at the vertical path (θ = 0°) for the different 
heights h

0
: 10 m (1), 1 km (2), 5 km (3), and 10 km (4). 

The "worst" propagation conditions (solid curves) and the 
"best" ones (dashed curves). The radiation source is 
located below the observation point. The value h

0
 is the 

height of source location above the underlying surface. 
 
The presence of this minimum is caused by the 

following causes: increasing in the propagation path length, 
on the one hand, leads to decreasing in the coherence radius 
due to increase in the optical thickness of the turbulent 
atmospheric column. On the other hand, the presence of 
filtering function φ(x) = (x/L)5/3 decreases the 
contribution from ground layers having the maximum 
turbulence level into the value of the spherical wave 
coherence radius. The existence of two opposite tendencies 
leads to that the dependence ρc, s on L is nonmonotonic. 

Since the profiles of C 
2

n
(h) (3) and (4) obey the different 

laws of decreasing with the height variation, the minima of 
the curves ρc, s(L) are for the different values of L. The 

presence of the second (local) minimum is explained by 

variations in the rate of C 
2

n
(h) decreasing with increase of 

height in models (3) and (4). 
 

 
 
FIG. 5. The same as in Fig. 4 but the radiation source is 
located above the observation point and h

0
 is the 

observation point height above the underlying surface. 
 
In conclusion we note that the estimation of the 

optical radiation coherence radius for the arbitrary 
wavelength can be obtained with the use of formula (6) and 
the results presented in Figs. 1–5. 
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