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The present approach to segmented mirror control used for phase compensation is 
to measure phase tilts with a wavefront sensor, apply these tilts to the segments, and 
then adjust the pistons to minimize the edge mismatch by bringing adjacent segment 
edge midpoints together. Matching the heights of adjacent segment edge midpoints 
leads to a linear system of equations for the segment pistons Ui , in terms of the 

segment tilts t
i , which looks like a discretized Poisson equation, ∇2U = 

= – ∇t . We demonstrate that the discrete linear system is ill–posed in 2 dimensions. 
Moreover, diffractive effects that arise from the segmentation must be accounted for 
in the wavefront control. 

 
1. INTRODUCTION AND SUMMARY 

 
The main purpose of a large segmented primary 

mirror in a ground–based laser power beaming system 
operating at near infrared wavelengths is to provide 
atmospheric compensation. Since this primary mirror is 
segmented diffractive effects that arise from this 
segmentation must be accounted for in the wavefront 
reconstruction. 

Wavefront fitting error results from the inability of 
the adaptive optics to exactly reproduce the beacon phase 
front and to impart the conjugate on the high power laser 
beam. Ideally, the conjugate of the beacon phase is 
applied to the uplink beam by the active mirror. And, 
even if the adaptive optics system were able to exactly 
measure and apply the conjugate to the high power beam, 
the distortion due to atmospheric turbulence would not be 
completely cancelled. This is due to the fact that the 
phase compensation is only perfect in the geometric or ray 
optics limit. Finally, there are diffractive scattering 
effects that arise due to the fact that the segmented 
primary mirror is not continuous. Neighboring segments 
with different tilts necessarily will have edges and corners 
that "stick up" or down out of the surface. The 
diffractive effects from this have been totally ignored 
until now. Edge mismatch between neighboring segments 
will impart discontinuities on the outgoing high power 
beam. We are the first to show that the minimization of 
the edge mismatch by matching the centers of adjacent 
segment edges, upon which the Poisson–solving control 
algorithms are based, is ill–posed. There are not enough 
segment degrees of freedom to satisfy the constraints. The 
difference between the total number of constraints and 
the total number of degrees of freedom gets larger as the 
segmented mirror gets larger (as the square of the number 
of segments). 

In Sec. 2, we begin by showing the 2–D problem for 
a segmented surface is ill–posed leading to a bumpy basin 
of approximate solutions (i.e., any straight–forward 
linear representation is singular). We also discuss 
physically correct systems performance criteria. In Sec. 3, 
we describe diffraction due to edge mismatch. 

 
 

2. THE PISTONED n–SEGMENTED SURFACE IS AN  

ILL–POSED PROBLEM 

 
For the 1–D case, setting tilts and iterating pistons 

converges to a well–defined solution. Let U
i be the height 

of the piston of the i th segment and ti be the tilt of the i th 

segment (see Fig. 1). 
 

 
 

FIG. 1. 
 

The height of the left edge of the i th segment is 

U
i – 

1
2 ti . The height of the right edge of the (i – 1) 

segment is Ui–1
 + 

1
2 ti–1

 . Matching the edges we obtain 

Ui – 
1
2 ti = Ui–1

 + 
1
2 ti–1

 . Now consider the height of 

the right edge of the i th segment which is Ui + 
1
2 ti and the 

height of the left edge of the (i + 1) segment, Ui+1
 – 

1
2 ti+1

 . 

Again matching we get Ui + 
1
2 ti = Ui+1

 – 
1
2 ti+1

 . Combining 

the two matching equations Ui–1
 + Ui+1

 – 2Ui = 
1
2 (ti+1

 – ti–1
) 

which is the continuum limit of the 1 – D Poisson equation: 
 

d2

dx2 U = 
d
dx t 
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and both of which have well defined solutions. Since t = –
dφ/dx, we arrive at U = – φ. 

We can now show that in the 2–D case, the 
discretized problem is ill–posed. Let us begin by defining 
the system. We must first define a criterion for "edge 
matching". If two neighboring segments have different tilt 
components along the edge, then the edges cannot be 
aligned. At best, we can only match one point along the 
edge. 

For simplicity, let us consider square segments. The 
analysis is identical for hexagonal segments. Let U

ij equal 

the height or piston setting of the (i th, j th) segment and 
tij = (t(1)ij , t(2)ij ) equal the tilt vector of the (i th, j th) 

segment. Match heights of adjacent segments at mid–points 
of neighboring edges (i.e., at the × in the following figure): 

 

 
 

FIG. 2. 
 
If we now match the right–hand edge of segment (i, j) 

we obtain: 
 

U
ij + 

1
2 t

(1)
ij  = Ui+1j – 

1
2 t

(1)
i+1j ; 

 
matching the upper edge of segment (i, j): 
 

U
ij + 

1
2 t

(2)
ij  = Uij+1

 – 
1
2 t

(2)
ij+1

 ; 

 
matching the left–hand edge of segment (i, j): 
 

U
ij – 

1
2 t

(1)
ij  = Ui–1j + 

1
2 t

(1)
i–1j ; 

 
and finally matching the lower edge segment (i, j): 
 

U
ij – 

1
2 t

(2)
ij  = Uij–1

 + 
1
2 t

(2)
ij–1

 . 

 
If we now combine all four matching equations and move 
the U's to one side, t's to other, 
 
U

i+1j + Uij+1
 + Ui–1j + Uij–1

 – 4Uij = 

 

= 
1
2 ( )t(1)i+1j – t(1)i–1j + t(2)

ij+1
 – t(2)

ij–1
 

 
which looks like the discretized version of Poisson equation 
 
∇2U(x, y) = ∇t . 
 
But Poisson equation is not continuum limit of the 
discretized system of matching equations. The reason for 
this is that the discretized system is ill–posed and has no 
exact solution. There are more edge matching equations 
than there are piston degrees of freedom. In other words,  

the "best" fit with the "minimum" edge mismatch is not in 
the configuration of state space or the n–segmented 
membrane. 

Here is a simple example to illustrate that the 2–D 
problem is ill–posed. Consider a segmented mirror made of 
just four square segments: 

 

 
FIG. 3. 

 
u

1
 represents the piston for square 1, u

2
 represents the 

piston for square 2, etc., and t
1
 represents the two–

component tilt for square 1, etc. We match the edges at 
mid–points a, b, c, and d. For a we have: 
 

u
1
 + 

1
2 t

(1)
1
 = u

2
 – 

1
2 t

(1)
2

 ⇒ u
1
 – u

2
 = (–) 

1
2 (t

(1)
1

 + t(1)
2
) ; 

 
and for b : 
 

u
1
 – 

1
2 t

(2)
1
 = u

3
 + 

1
2 t

(2)
3

 ⇒ u
1
 – u

3
 = 

1
2 (t

(2)
1

 + t(2)
3
) ; 

 
and for c : 
 

u
2
 – 

1
2 t

(2)
2
 = u

4
 + 

1
2 t

(2)
4

 ⇒ u
2
 – u

4
 = 

1
2 (t

(2)
2

 + t(2)
4
) ; 

 
and for d : 
 

u
3
 + 

1
2 t

(1)
3
 = u

4
 – 

1
2 t

(1)
4

 ⇒ u
3
 – u

4
 = (–)

1
2 (t

(1)
4

 + t(1)
3
) . 

 
Rewriting the last four equations as the matrix equation 
Mu = T,  
 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞1 –1 0 0

1 0 –1 0
0 1 0 –1
0 0 1 –1

 

⎝
⎜
⎛

⎠
⎟
⎞

u
1

u
2

u
3

u
4

 = 
1
2 

⎝
⎜
⎛

⎠
⎟
⎞

– (t(1)
1
 + t(1)

2
)

(t(2)
1
 + t(2)

3
)

(t(2)
2

 + t(2)
4
)

– (t(1)
4

 + t(1)
3
)

 

 
and expanding the determinant of M in co–factors we find 
 

det M = 1 
⎪
⎪
⎪

⎪
⎪
⎪0 –1 0

1 0 –1
0 0 –1

 – (–1) 
⎪
⎪
⎪

⎪
⎪
⎪1 –1 0

0 0 –1
0 1 –1

 = 

 
= – 1 + 1 = 0 . 
 
Therefore, M is singular and cannot be inverted. The 
problem is ill–posed and an exact solution does not exist. 

The midpoint edge matching condition led to a set of 
discretized equations whose continuum limit appeared to be 
the Poisson equation with the source term ∇t. Since t 
represents – ∇φ, we again arrive at U = – ∇φ which is 
desirable. When the tilts of each segment are updated and 
the pistons have not yet been readjusted, the segmented  
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membrane starts out at one point in the configuration space. 
The "Poisson solvers" then adjust the pistons to move the 
configuration of the segmented membrane towards the point 
in the configuration space that is a solution of Poisson 
equation. But if the "best" fit solution is not in the 
segmented membrane configuration space, then what is the 
Poisson iteration converting to? 

There are many approximate solutions to the matching 
equations where the various neighboring segments do not align 
in the middle but nearby. Once the Poisson solver moves the 
segmented membrane to a configuration that is in the basin of 
approximate solutions, then additional iterations just move the 
configuration from one approximate solution to another. The 
Poisson solver keeps trying to find the solution, but since it 
isn't in the space, the Poisson iterations just bounce it around 
the group of approximate solutions. 

 
3. POWER BEAMING AND MINIMIZING  

EDGE MISMATCH 

 
Since we are interested in power beaming and not just 

imaging, the criterion for determining the "best" surface is the 
energy on target in a given radius of the beam. Since not all of 
the approximate solutions lead to excellent system behavior 
(energy on target), it is desirable to find additional constraints 
or characteristics of the "best" approximate solutions so as to 
dampen the fluctuations. The criterion for how good an 
approximate solution is should involve the error spectrum (due 
to diffraction) and not just the rms error. 

Due to the diffracting propagation leg associated with 
beaming, the rms surface fit error is not a sensitive enough 
criterion of control loop system performance. As far as  

diffraction is concerned, the spectrum of the surface fit error 
is more relevant. The high spatial frequency phase 
disturbances will scatter energy out of the beam as it 
propagates via diffraction (independent of turbulence).1,2,3  

To put this in proper perspective, consider this system 
with tilts directly measured from the wavefront sensor then 
applied to the segments and with tilts locked until the next 
wavefront sensor measurement update. The pistons can be 
adjusted to minimize edge mismatch. But implicit in this 
method is the assumption that segment tilt error is far more 
important than edge error. Edge mismatch imparts phase 
discontinuities onto the outgoing beam, and thereby 
introduces high spatial frequency phase disturbances. 
Segment tilt error imparts lower spatial frequency phase 
disturbances. The high spatial frequency disturbances will 
be uncorrectable due to bandwidth limitations in the 
hardware. The low frequency disturbances can be minimized 
since they are in the compensation band. 
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