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The method of continuation of individual scans of the interferogram is proposed, 
according to which the continuation is constructed from the fragments of scans 
themselves. In doing so the smoothness functionals are minimized on the set of scan 
readings. The results of numerical experiments on the interferogram inversion are 
given. 

 
Application of the Fourier and Hilbert transforms to 

invert interferograms1–3 was a natural step forward as 
well as in the case of solution of many other problems in 
which the analysis was transferred from the coordinate to 
the frequency space. In this case the determination of the 
arrangement of extremal lines in the interferogram was 
replaced by the more exhaustive analysis of the object 
field after its filtration in the trigonometric basis using 
the Hilbert filter. 

Some problems arise when the algorithm based on 
the Hilbert transform (H) is applied. It is their successful 
solution that opens up the possibility to achieve a high 
accuracy reconstruction of the object phase higher than 
λ/100. 

One of these problems discussed in this paper is the 
inconsistency between the domain of definition of the 
trigonometric basis functions, i.e., that of the H operator, 
which has the only boundary at infinity and the bounded 
domain often being, in addition, multiple–connected, 
where the interferogram is specified. This inconsistence 
manifests itself as boundary bursts in wave function and 
especially in its phase in the process of the interferogram 
inversion. Therefore the problem arises of the optimal 
continuation of the interferogram beyond the domain of 
definition which can be solved using the iteration method 
(R. Gershberg, 1986, Ref.4). To do this, the algorithm of 
the fast Fourier transform (FFT) is most often applied. 
However, the FFT iterations of the two–dimensional data 
array take a lot of time and, besides, the additional two–
dimensional array is required to place the imaginary part 
of spectrum of the function under transformation. Even 
more essential drawback is the absence of assurance in the 
iteration process convergence for discrete objects in 
general case, especially in the presence of noise.5 It is of 
great importance to choose the correct zero approximation 
as well. 

Two–dimensional matrix of readings of the 
interferogram is redundant with respect to the object 
phase, because the number of readings is chosen 
proceeding from the frequency of the space carrier, 
namely, the number of interference bands, and on the 
frequency properties of the noise. Therefore the idea 
occurs to analyze the interferogram only in its individual 
sections from which the phase sections are retrieved. 
Their composition represents a two–dimensional function. 
The sections of the interferogram, the scans, should have 
the causal Fourier transform for the object field with 
respect to the parameter of the scanning line.  

It was found in numerical experiments3 that the 
phase monotony or the possibility to bring it to this form 
due to parity and periodicity of the cosine function is 
sufficient for the causality of the object field either 
immediately or after the stretching – compressing 
transformation. This provides considerable opportunities 
for choosing the rectilinear and curvilinear scans in the 
interferogram. 

If the chosen scanning curve is closed and pertains to 
the domain of definition of the interferogram the problem 
of continuation is absent because the scan is the periodic 
function of the scanning parameter. However, usually the 
scans are discontinued at the external boundaries of the 
domain of definition of the interferogram. Besides, when 
the domain is multiple–connected, the discontinuities 
appear at internal boundaries. As the result a scan 
consists of some bounded fragments. 

Further we obtain the criteria of the optimal 
continuation. Let u(x) be the bounded function defined 
for all x, and the scan of the interferogram contains the 

known fragments of this function. Let u
∼
(x) be coincident 

with u(x) within the limits of the scan. Let us introduce 
the integrable square function Ω(x) posessing the low 
frequency spectrum which does not overlap with the 

spectra of the functions u
∼
(x) and u(x). Let us consider 

the equality following from the properties of the Hilbert 
transform 
 

⌡⌠
–∞

∞

  Ω2( x) (u( x) – u
∼
( x))2 dx =  

 

= ⌡⌠
–∞

∞

  Ω2( x) (H [u( x) – u
∼
( x)])2 dx .  (1) 

 
Let the function Ω(x) turn into unity within the 

limits of the scan and into zero beyond of it. The left–
hand side of Eq. (1) goes to zero in this case, and the 
spectrum of the function Ω(x) becomes wider. When the 
spectrum becomes so wide that begins to overlap the 

spectra of u
∼
(x) and u(x), the equality (1) becomes 

invalid. In order to the invalidity of the equality can 
manifest itself at the smallest possible value of its left 
side it is necessary to ensure the most possible narrow– 
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bandness of the functions u(x) and u
∼
(x). A posteriori, it 

is feasible only to reduce the width of spectrum of the 

function u
∼
(x) due to the more smooth joining of 

individual scan fragments of the interferogram within the 
domain of definition, the more smooth continuation 
beyond the domain, and the choice of the functional 
dependence providing this smoothness. Thus, in order to 
the Hilbert transform of the continued function can 
correspond most closely to the true one it is necessary for 
the continuation operation to ensure the minimal width of 

the spectral band of the function u
∼
(x) when the fragments 

of u
∼
(x) are specified. Therein lies the criteria of the 

optimum. 
Next consider the structural limitations contributed 

by the numerical methods. The most effective and 
technically supplied algorithm for the Fourier transform 
of the set of readings is the FFT. The Hilbert transform 
and the other types of linear filters are readily realized on 
its basis. However, the FFT algorithm implies that the 
readings are given at a circle, hence they may correspond 
only to the periodic function. Therefore the scan of the 
interferogram should be continued onto the whole infinite 
axis also periodically. In addition it should be kept in 
mind that the FFT algorithm is processing the arrays of 
the quite definite length. Usually this value is equal to 
the integer power of two, namely, 2m, but for the rarely 
used Singleton algorithm (R.C. Singleton, 1968, Ref. 6) 
the allowed lengths represent sufficiently dense set. 

A priori information on the properties of an 
interferogram consists in that the phase difference of the 
object field and the reference fields contains the 
considerable linear, quadratic, or close to them 
component and it is the component which yields the 
fringed structure of the interferogram. The linear 
continuation of such component conserving the continuity 
both of it itself and of its derivative satisfies the criteria 
of optimum introduced before, because the width of 
spectrum s(k) of the signal u(x) with respect to the 
central frequency kc is determined by the derivative of 

the signal phase φ(x). For the signal with a constant 
amplitude exp iφ(x) the following relation is valid 

 

1
2πT ∑

k=–∞

∞

  ( k – kc)
2 ⏐s(k)⏐2 = 

1
T ⌡⌠

0

T

  φ′2( x) dx –  

 

– 

⎝
⎜
⎛

⎠
⎟
⎞1

T ⌡⌠
0

T

  φ′( x) dx

2

 ,  (2) 

 
where T is the period. Consequently, the condition should 
be fulfilled for appearance of additional interference 
fringes or their parts, the width of which should be close 
to the width of the nearest given interference fringes after 
the continuation of the interferogram. The known 
theorem on the convergence of the Fourier series connects 
the speed of convergence of the series with a number m of 
the continuous derivatives of the function under 
transformation 
 
s(k) = o (1/km+1) . (3) 
 
It is clear from this expression that in the process of 
continuation the jumps between the known fragments  

u(x) and obtained as a result of continuation u
∼
(x) are 

undesirable. However, this situation is typical for the 
iteration method of continuation, namely, either a large 
number of iterations takes place and we have the smooth 
joining of fragments with the availability of convergence 
or only a few number of iterations is carried out and we 

have a discontinuity between the functions u(x) and u
∼
(x) 

in the point of their joining. 
In the paper by A. Spik, 1987, Ref. 7, the technique 

is described of supplementing the interference fringes in 
individual scans of the interferogram by the sine curve, 
the initial phase, frequency and amplitude of which are 
determined using the known fragments. According to this 
method it is necessary to determine the positions of the 
extremal points in the scan. However, in the presence of 
the noise this operation is incorrect and the smoothness of 
the continued function is unavailable. 

In this paper the way of continuation of individual 
scans of the interferogram is proposed, according to which 
the continuation is constructed from the fragments of the 
scans themselves. In doing so some smoothness functionals 
are minimized at the set of readings of the scan. 

Let us consider one of possible algorithms of 
realization of this method. We construct the continuation 
making shifts of the scan fragments beyond the domain of 
definition. Let the continued scan be defined in the 
interval [1, n]. Let us at first continue the right edge of 
the scan on some number of readings r, which ensures the 
minimum of the functional 
 

r∈(k,n–k)

L(r)  = ∑
i=n–k+1

n

  ⏐u( i) – u( i – r)⏐ = min . (4) 

 
Then let us continue the left edge of the scan on l 
readings under condition 
 

l∈(k,n–k)

L(l)

 

=∑
i=1

k

  ⏐u( i) – u( i + l)⏐ = min . (5) 

 
The search of the minimum can be made simply taking 

readings one by one. Simultaneously the separations are 
minimized both between the two functions and between their 
differences Δu(i). For example, at k = 2 we obtain 

 

min = ⏐u(1) – u( l + 1)⏐ + ⏐u(2) – u( l + 2)⏐ > ⏐[u(2) –  
 

– u(1)] – [u( l + 2) – u( l + 1)]⏐ = ⏐Δu(1) – Δu( l + 1)⏐ . (6) 
 

The newly formed edges are joining between each 
other in the similar way to obtain the periodic function, but 
the smoothness functional depends now on two parameters 

 

L(p, q)
p∈(0,n–k)

q∈(0,l–k)

 = ∑
i=1

k

  ⏐u( r + i + p –1) – u( i + q)⏐ . 

 

In the same way, one by one, the conditional minimum 
L(p, q) is found, so that the length of the continued scan 

nc = n + l + p + q belongs to the Singleton set of 
numbers. Therefore the sufficient density of these 
numbers in the interval [n, 3n] ¸ nc is of principle 
importance. It is this quantity on which the efficiency of 
the method depends. For the most widely used range from 
m = 7 to m = 8 these numbers are listed in Table I. 
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TABLE I. 
 

 

128 
150 
170 
195 
224 

 

130 
152 
171 
196 
225 

 

 

132 
153 
175 
198 
228 

 

133 
154 
176 
200 
234 

 

135 
156 
180 
204 
240 

 

136 
160 
182 
207 
242 

 

 

138 
161 
184 
208 
243 

 

140 
162 
187 
209 
245 

 

143 
165 
189 
210 
250 

 

 

144 
168 
190 
216 
252 

 

 

147 
169 
192 
220 
256 

 
Figure 1 demonstrates the exponentional increase of 

the Singleton numbers and, consequently, the feasibility 
of continuation on definite interval decreases beginning 
from some point. The feasibility of continuation can be 
determined with the use of the ratio of the quantity of 
the Singleton numbers in a given interval to the length of 
this interval, see Fig. 2. 

 

 
 

FIG. 1. The Singleton numbers. The numbers in the 
abscissa axis correspond to the lower curve. The rest 
curves have the intervals of definition [352, 702] and 
[703, 1053], respectively. The logarithm scale corresponds 
to ordinate axis. 
 

 
 

FIG. 2. The feasibility of the scan continuation on 10 
readings (circles) and on 100 readings (curve). The 
reading number from which the continuation begins is 
shown in the abscissa axis. 

 
The conclusion following from the above description 

is that the method meets the introduced criteria of 
optimum under location of k and n in the class of 
functions of the continued scan and within the framework 
of the Singleton algorithm. 

A number of numerical experiments was made to 
check out the method and the algorithm described above. 
The first experiment consisted in calculation of the model 
interferogram. It had the 6.3 interference fringes, the 
root–mean square (rms) deviation of the object phase was 
equal to 0.5. The phase was prescribed by the part of the 
series containing 21 Zernike polinomials, the power 
spectrum was unimodular and changed from zero at the 
edges to unity at the point corresponding to the spectral 
aberration. The order of the reading matrix was equal to 
77, the number of quantization levels was equal to 128. 
The interferogram was inverted according to the method 
of Ref. 3 on the basis of the Hilbert transform using the 
proposed algorithm of continuation and without it. The  

last is possible because the number 77 is just the 
Singleton number. The rms deviation of the retrieved 
phase from the initial one was calculated without taking 
into account the band of various width at the boundary of 
the matrix. Sixteen experiments were made. It can be 
seen from Table II that the continuation decreases 
essentially, by the order of magnitude, the boundary 
bursts which occupied at the boundary the fringe of 10% 
wide as compared with the dimension of the 
interferogram. 

In the process of continuation the number of the 
interference bands increases. With this purpose the 
continuation can be made several times for the same 
reference signal. It could reduce the error of retrieving in 
the cases when the dispersion and the frequency band of 
the object phase do not correspond to the carrier 
frequency of the object field, and this field contains the 
origin of coordinates in the Fourier plane. To check this 
out the numerical experiment was made. The 
interferogram differed from the previous one only by the 
number of the interference fringes, which was equal to 
5.5. Every continuation supplemented 1.5–3 interference 
fringes. 

The decrease and the following increase of the error 
of the phase retrieving is seen from Table III. The 
decrease confirms the assumption described above, and 
the increase in error is connected with the only 
conditional optimality of the continuation. 
 

TABLE II. 
 

Relative width of 
the  

boundary band, %

Normalized rms error of the phase 
retrieving 

 with continuation without 
continuation 

0 
1 
5 
10 
15 
20 
 

0.0065(3) 
0.0057(2) 
0.0057(2) 
0.0054(2) 
0.0025(1) 
0.0025(1) 

0.068(5) 
0.026(3) 
0.012(2) 
0.008(2) 
0.004(2) 
0.002(1) 

 

TABLE III. 
 

Number of continuations of 
the  

interferogram scan  
 

Normalized rms error of  
the phase retrieving 

 

0 
1 
2 
3 
4 
5 
 

0.456(4) 
0.136(2) 
0.124(2) 
0.108(1) 
0.212(3) 
0.283(3) 
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FIG. 3. The reference phase, rad. The interferogram under 
inversion. 

 
The interferogram defined in the circle with the round 

central aperture was inverted, see Fig. 3. The number of 
interference fringes was equal to 18, the rms phase deviation 
was equal to 0.5, and the number of readings on the 
diameter was equal to 101. The normalized rms deviation of 
the multiplicative noise was equal to 0.48. The rest 
parameters were the same as in the first experiment. This 
interferogram is double–connected, its scans have different 
lengths and the same numbers of interference fringes. The 
scans passing through the central aperture consisted of two 
fragments which were continued independently. The 
normalized rms error of retrieving the phase was obtained to  

be 0.051 (2) that corresponds to the rms error λ/250 at the 
peak value λ/20. The time of inversion of one interferogram 
using IBM PC 386 was equal to ∼ 150 s. 

In that way the proposed method of continuation of 
scans of interferogram beyond the domain of definition 
solves the formulated problem. 
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