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The theory of so–called "lens" transform known also as Talanov coordinate 
transform is discussed. It gives the possibility for the numerical modeling of focused 
beams propagation along very short paths and collimated beams propagation along 
very long path, reducing the problem on propagation of the initial beam to the 
problem on propagation of the equivalent beam with different initial curvature of the 
wave front. The formula for conversion of the refractive index field along the initial 
beam path to the refractive index field along the equivalent beam path is derived. 
This formula is used to recalculate the parameters of a medium in the problem on 
nonstationary thermal blooming. 

 
1. INTRODUCTION 

 
Methods of numerical simulation appear to be 

convenient for studying of nonlinear effects arising in 
transferring of high powerful radiation through the 
atmosphere or other media. But the efficiency of modern 
computers restricts the range of the paths which can be 
calculated for acceptable time intervals. These restrictions 
are caused by both the wide range of beam diameter 
variations and by high–frequency spatial oscillations in the 
complex amplitude of the optical wave. The former factor 
manifests itself as the beam propagates along the path and 
is typical mostly of collimated beams. The latter one is 
typical of focused beams with the large Fresnel number of 
emitting aperture. It influences the process of numerical 
calculation at the very beginning if it is not masked by 
defocusing effect of the inhomogeneous medium. 

The "lens" transform known also as the Talanov 
coordinate system transform enables us to extend to some 
degree the area of calculated problems by reducing the 
problem on propagation of an initial beam to the problem 
on propagation of an equivalent beam with different initial 
curvature of the wave front. It was shown in Ref. 1 that the 
inhomogeneous parabolic equation, which describes paraxial 
beam propagation through the medium with the quadratic 
Kerr effect, is invariant to the change of variables binding 
the complex amplitudes of the beams focused by lenses of 
different focal lengths. This transform is also reported to be 
applicable for some other types of nonlinearity including a 
few nonstationary problems. But it should be stressed that 
the invariance of an initial equation or a system of 
equations describing the beam propagation is not necessary 
for the numerical simulation. Therefore the Talanov 
transform can be applied to a wider range of problems by 
recalculating parameters of a medium depending on the 
longitudinal coordinate with preservation of the 
unambiguous relation between the original and equivalent 
beams. 

J. Wallace3 applied this method for solving the 
problem on stationary thermal blooming taking into account 
the kinetic cooling effect. Bradley and Herrman2 used the 
coordinate system in which the Gaussian beam propagating 
in vacuum kept the size and phase unchanged in the 
problem on thermal blooming of both continuous and pulsed  

radiation. Later Sziclas and Siegman4 showed that the lens 
transform is one of the limiting cases of the more general 
complex coordinate transform. Fleck with co–authors5 
applied the Talanov transform to the complicated 
nonstationary problem on thermal blooming taking into 
account the effects of transonic beam scanning, forced and 
free convection as well as atmospheric turbulence. In the 
same article the more general form of transform was 
developed distinguished by the independent transformation 
of the wave front curvature along the longitudinal 
coordinates x and y. However in Ref. 5 the Talanov 
transform was applied not to the initial system of equations 
but to the diffraction steps of calculating scheme so that 
after every diffraction step of the splitting method scheme 
the inverse transform was accomplished and the heat 
transfer equation was solved for the initial beam rather than 
for the equivalent one. In the recently published article by 
Ustinov6 the Talanov transform was generalized to the case 
of stationary thermal blooming including the transonic beam 
scanning. 

This article is devoted to generalization of the Talanov 
transform to the case of nonstationary thermal blooming. 
The problem is completely solved for the equivalent beam 
both at the diffraction steps and between them. Of course, 
as was done in Ref. 5, the lens transform could be applied 
only to the diffraction steps of calculating scheme, but for 
thermal blooming along vertical and slant atmospheric paths 
we were interested in using the varying (increasing) 
integration steps along the longitudinal coordinate. They 
were chosen so that every step was accompanied by 
approximately equal phase distortions. To meet this 
condition it was necessary to know the profile of the 
thermal blooming parameter for the equivalent beam rather 
than for the initial one. 

Besides, we were interested in generalization of the 
Talanov transform to a wider range of problems. That is 
why we derived first the transform formula for the arbitrary 
distribution of the refractive index in the linear case (that 
was not explicitly reported in the above–mentioned 
articles) and then the formulas for the transformation of the 
atmospheric parameters profiles. Thus, having separated the 
optical part of the problem from the substantial equation, 
we got the possibility for dealing solely with the substantial 
equation that simplified the problem on generalization of  
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the transform to other regimes of the thermal blooming and 
other nonlinearity mechanisms.  

 
2. FORMULA FOR ARBITRARY LINEAR MEDIUM 

 
Let a paraxial beam with linear polarization of the 

electromagnetic field vectors be considered. The complex 
amplitude U(ρ, z) of the wave propagating along the OZ 
axis in vacuum is described by the parabolic wave equation 

 

2 i k 
∂U
∂z  = Δ

⊥
U , (1) 

 

where k = 2π/λ is the wave number, λ is the wavelength, 
Δ

⊥
 = ∂2/∂x2 + ∂2/∂y2 is the transverse Laplacian. By 

integrating this equation by means of the Fourier transform 
or the Green's function we obtain the known convolution 
integral 
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We take into account here, that wave propagation through the 
thin focusing lens of the focal length f

1
 corresponds to the 

multiplication of the complex amplitude by the phase factor 
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In particular case z

1
 = f

1
 and z

2
 = f

2
, the correlation 

between U
1
 and U

2
 can be easily derived from Eqs. (3) and (4) 
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The formula for intensities can be obtained from Eq. (5) 
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Thus, the amplitude distributions differ from each 
other by the factor and the scale, and the phase fronts differ 
by the quadratic phase difference proportional to the 
difference in optical lens powers, namely 1/f

2
 – 1/f

1
. In 

general case z
1
 ≠ f

1
 and z

2
 ≠ f

2
, we can express one field in 

terms of another if the relation is true 
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By denoting δ = 1/f

2
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1
, it is easy to obtain 
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If z

1
 and z

2
 meet relations (8) and (9), then from 

Eqs. (3) and (4) we have 
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By substituting (9) into (10) and omitting the subscript on 
z we have 
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Thus, it is shown, that in the plane z = 0 the fields 
differing from each other by the quadratic phase factor 

exp{ }i
2 kδρ

2  are related by Eqs. (11) and (12) under 

diffraction in vacuum or optically homogeneous medium.  
That gives the possibility to express one field in terms of 
another in the cross sections satisfying to Eq. (6). 

In optically inhomogeneous medium where the 
refractive index is the coordinate–dependent function the 
complex amplitude of propagating beam is described by the 
nonuniform equation 
 

2 i k 
∂U
∂z  = Δ

⊥
U + 2 k2 n

∼
(ρ, z) U , (13) 

 

where n
∼
(ρ, z) = n(ρ, z) – 1 � 1. Let  

 

U
1
(ρ, z) = U

0
(ρ, z) (14) 

 

U
2
(ρ, z) = U

0
(ρ, z) exp { }i

2 k δ ρ2  . (15) 

 

Then, for the case of propagation in vacuum the fields 
U

1
 and U

2
 are related by Eqs. (11) and (12). 

Let the field U
1
 propagate in medium with the 

refractive index n
1
(ρ, z). Such a distribution of the 

refractive index n
2
(ρ, z) should be found that makes 

relations (11) and (12) valid for the field U
2
 propagating 

through the optically homogeneous medium with the same 
distribution. 

Thus, let the functions U
1
 and U

2
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half–space z > 0 be related by Eq. (11) and the function 
U
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(ρ, z) is required to be found that makes 

the following equation valid for U
2
: 
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By rewriting (16)–(17) to  
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where r = (ρ, z) = (x, y, z), we can reduce the last formula to 
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By dividing (18) by (20) and omitting the symbol ∼ at 
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The first fraction in the right side of the equation can be 
easy calculated from Eq. (11) 
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To calculate the second fraction, Eq (11) should be 
differentiated with respect to ∂z, ∂2x, and ∂2y. By 
combining the results of differentiation, we have 
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so that the second fraction in (21) becomes equal to: 
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By substituting (22) and (24) into (21) we can obtain 
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3. GENERALIZATION OF THE TRANSFORM TO THE 

CASE OF THERMAL BLOOMING ALONG THE  

INHOMOGENEOUS PATH 
 
Consider the nonstationary heat transfer equation for 

the absorbing medium moving at a rate V(z) and 
characterized by the absorption coefficient α(z), density 
ρ(z), heat capacity Cp(z), and heat conductivity χ(z). 

Multiplying it by the refractive index derivative with 
respect to the temperature nT′(z) we derive an equation for 

the refractive index n(r, T) = nT′(z) T(r, t) 
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where the arguments r and t of n

2
(r, t) have been omitted 

for brevity. It is easy to see that this equation is valid by 
the following relations between the initial and equivalent 
beam path parameters: 
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If there are no heat transfer and wind on the path, and 

if parameter q
1
 is independent of the longitudinal 

coordinate (homogeneous path), then these equations will 
be invariant to the examined transform that corresponds to 
the results by Talanov.1  

 
4. CONCLUSION 

 
The lens transform formula for an arbitrary linear 

medium derived in this paper enables us to generalize this 
transform to the cases with complicated nonlinearity 
mechanism, that was demonstrated for the case of 
nonstationary thermal blooming along the inhomogeneous 
path taking the heat conductivity of a medium into account. 
Another possible application is the transform generalization 
to the case of randomly inhomogeneous medium, for 
example, the turbulent atmosphere. As a result of this 
problem solution, there should be developed the transform  
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formulas for the structural constant of the refractive index 
fluctuations as well as for outer and inner scales of 
turbulence while in more general case, the formula for the 
spectral density transform. 

However, derivation of these formulas requires 
somewhat different approach than that used for nonlinear 
problems, because the wave propagation through randomly 
inhomogeneous media is described by a stochastic equation 
that can be solved only by means of approximate methods. 
Moreover, even in case of homogeneous and isotropic 
turbulence along the initial path, the turbulence along the 
equivalent beam path is to be described in terms of random 
field with slowly varying average characteristics, that is 
also an approximate approach. Making formal calculations 
on the structural function expression for inertial interval of 
turbulence, we derived the following relation for the 
structural constant transform: 
 

C 2
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(1 – δ z)4  C 2
n(1)( )z
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But we are not sure that this formula gives the valid 
solution. Apparently, the form of transform of the 
turbulence parameters along the path should depend on the 
approximation applied for the propagation equation 
solution. 
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