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A field reconstructed from a hologram of a scattering medium is theoretically 
described.  The intensity distribution in the focal plane of a lens positioned behind the 
hologram is analyzed.  Two superimposed patterns are shown to be observed in this 
plane.  The first pattern is in complete agreement with a small-angle spectrum of 
radiation scattered by an ensemble of particles, and its form is independent of 
distances from the medium to the hologram and lens.  The second pattern represents 
the Fresnel fringes and depends on the distance between the medium and the 
hologram.  The experimental results are presented. 

 
1. INTRODUCTION 

 

Among different methods of optical diagnostics and 
recording of light scattering media (aerosol, hydrosol, etc.), 
the holographic method occupies a particular position.  
Actually, a hologram of a scattering medium enables one to 
repeatedly reconstruct the optical field scattered by this 
medium and to extract information about the parameters of 
macroparticles of the medium.  To do this, the particle 
images reconstructed from the hologram are usually 
analyzed using an optical system and the most complete 
information about the size, shape, and location of each 
particle is obtained.  However, such a procedure requires 
much time and hence is efficient only for ensembles of few 
particles. 

With the hologram of a scattering medium at hand it 
is possible to combine the procedure of field reconstruction 
from the hologram with some standard procedure of optical 
diagnostics of the medium to measure such integral 
characteristics as particle size distribution in real time.  
Thus in the experiments described in Refs. 1–3 a small–

angle meter of integral particle size distribution was placed 
immediately behind the illuminated hologram. 

It is known however that the field reconstructed from 
a plane hologram is not fully equivalent to the initial field 
recorded on the hologram.  The reconstructed field consists 
of two components: initial field and conjugated field.  Each 
of these components may interfere with specific 
measurements.  The interference between these fields may 
also interfere with such measurements.  Moreover, each 
component can carry supplemental information about the 
medium, therefore both of these components must be taken 
into account when interpreting the measurements made in 
the field reconstructed from the hologram. 

The field reconstructed from a plane axial hologram of 
an ensemble of particles is theoretically considered in 
sections 2, 3, and 4 of this paper.  Both the initial and 
conjudate fields are shown to produce the same intensity 
distribution (the Fraunhofer fringes of diffraction by 
particles) in the focal plane of a lens of the analyzer, e.g., a 
small–angle meter of particle size distribution.  The 
interference between these fields results in smaller–scale 
Fresnel fringes which were obviously studied only by us.4 

The experimental results of observation of the Fresnel 
fringes are described in section 5. 

 

2. HOLOGRAPHY OF SCATTERING MEDIA 
 

Light fields produced during holography of scattering 
media are readily described in an analytical form since they 
represent simply the superposition of spherical waves.  On 
the basis of parabolic equation frequently used in the theory 
of wave propagation such a spherical wave has the form 

 

Uj(x, ρ) = ϕj ⎝
⎛

⎠
⎞ρ – ρj

x – xj
 exp 

⎣
⎡

⎦
⎤i k (ρ – ρj)

2

2(x – xj)
 / (x – xj), (1) 

 

where k = 2π/λ, λ is the wavelength, x is the 
longitudinal and ρ = (y, x) is the transverse coordinates, 
and (xj, ρj) is the point of wave focusing. The multiplier 

(x – xj)
–1exp[ik(ρ – ρj)

2/2(x – xj)] describes an 

isotropic spherical wave, and the angular function ϕ 
which varies much more slowly compared to the exponent 
modulates a spherical wave in amplitude and phase.  The 
angular function ϕ usually vanishes outside some cone. 

It should be noted that formula (1) describes the 
wave both before the focusing point x < xj and after it 

x > xj. Actually, when x > xj, the multiplier  

(x – xj)
–1exp[ik(ρ – ρj)

2/2(x – x
j
)] describes a spherical 

wave outgoing to the right of the focusing point x = xj. 

When the observation point goes over into the region 
x < xj, the multiplier x – xj is opposite in sign.  Such 

change of sign of the exponent converts a spherical wave 
from a divergent to a convergent one.  The change of sign of 
the multiplier (x – xj)

–1 is equivalent to wave phase shift 

by π (exp (iπ) = –1) when passing through the focusing 
point.  This phase shift is well known in optics.  As for the 
change of sign of the multiplier x – xj entering the 

argument of the angular function ϕ, the angular function 
remains unchanged with simultaneous change of sign of the 
multiplier ρ – ρj.  This oboiously corresponds to constant 

value of the angular function on a ray passing through the 
focusing point. 
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From here on, for simplicity, we consider ensembles of 
particles of radius b which is much larger than the 
wavelength 

 

b .
 
λ

 
. (2) 

 
The generalization to the case b < λ should present no 

problems. 
Let a plane wave 
 

U
0 

=
 
1 (3) 

 
propagating in the direction of the x axis be scattered by a 
particle centered at the point (xj, ρj).  At distances (x –

 xj) > kb2, i.e., in the wave zone, the scattered field is 

described by spherical wave (1) with the angular function 
being referred to as the scattering amplitude f.  It is known 
that at small scattering angles 
 

Θ =
 
⏐(ρ –

 
ρj) / (x – xj)⏐

>

∼ λ / b (4) 

 
the scattering amplitude is produced by wave diffracted by 
a particle shadow, i.e., due to diffraction by a black screen 
formed by particle projection onto the plane x =

 
const 

 

fi(n) = 
i
l ⌡⌠ exp ( – i k n ρ) Sj(ρ) d ρ , (5) 

Sj(ρ)

 

= {  1 inside the particle shadow,
0 outside it,  (6) 

 

where n = (ρ – ρj)/(x – xj).  It should be noted that 

expression (6) is valid for the majority of existing particles.  

The sole exception is provided by large (b . λ) optically 
soft particles inside which the run–on of the wave phase 
does not exceed 2π. This case is said to be anomalous 
diffraction. 

During recording of an axial hologram of scattering 
media, the superposition of incident (3) and scattered waves 
arrives at a photographic plate 

U = 1 +
 
ω, (7) 

 
where the scattered wave is a superposition of waves 
scattered by individual particles  
 

ω = ∑ Uj = ∑ 
1

x – xj
 fj ⎝
⎛

⎠
⎞ρ – ρj

x – xj
 exp 

⎣
⎡

⎦
⎤i k (ρ – ρj)

2

2(x – xj)
. (8) 

 
Photographic blackening is proportional to the field 

intensity 
 

I
 
= ⏐1 + ω⏐2 = 1 + ω + ω* + ⏐ω⏐2 ≈ 1 + ω + ω*. (9) 

 
The square of the scattered field intensity can be neglected 
on account of the estimate 

 

⏐Uj⏐ ∼ ⏐fj⏐ / (x – xj) ≤ k b2 / (x – xj) Ü 1. (10) 
 

When the hologram is reconstructed, i.e. when it is 
illuminated by plane wave (3), the field behind the 
hologram, according to Eq. (9), consists of three terms 

U = 1
 
+ ω + ω∼, (11) 

 
where the first term is the incident field, the second term 
is the field scattered by an ensemble of particles which 
forms a virtual image, and the third term is additional 
field produced by the term ω* on the hologram which 
forms a real image of the object behind the hologram. 

In this case the term ω* forms the superposition of 
spherical waves with focal points (κj, ρj) being symmetric 

about the points of particle centers (xj, ρj) with respect 

to the hologram plane.  Let us denote the hologram 
position on the x axis as x

0
 both during its recording and 

reconstructing, then 
 

κj = 2 (x – xj) + xj = 2 x – xj. (12) 

 

The field ω∼ is the superposition of spherical waves  
 

ω∼ = ∑ U
∼

j, (13) 

 

which are described by expression (1)  
 

U
∼

j = 
⎝
⎛

⎠
⎞– 

1
x – kj

 f *j⎝
⎛

⎠
⎞– 

ρ – ρj

x – kj
 exp 

⎣
⎡

⎦
⎤i k (ρ – ρj)

2

2 (x – kj)
. (14) 

 
Here the factors (–1), which were absent in Eq. (8), 
provide for the fulfillment of the condition  
 

ω∼(x
0
, ρ) = ω*(x

0
, ρ). (15) 

 
It should be noted that in the vicinity of the focal 

point (κj, ρj) the wave Uj forms a particle image.  

Therefore, in analogy with the field Uj in the near 

diffraction zone ⏐x – κj⏐ Ü kb2, the expression for the 

scattered field in the form of spherical wave (14) breaks 
down.  This fact is usually unimportant, since the near 
diffraction zone is small.  Moreover, many theoretical 
results obtained with the use of spherical waves will 
remain unchanged if we use exact expression for the 
scattered field. 

 
3. THE RECONSTRUCTED FIELD IN THE  

FOCAL PLANE OF A LENS 

 
In the known optical method of measuring the 

particle size distribution, the field scattered by an 
ensemble of particles is converted with a lens system and 
then intensity distribution is studied in the focal plane of 
a lens. 

 

 
 
FIG. 1.  Optical scheme to the calculation of the intensity 
distribution in the focal plane of a lens 
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In this connection let us consider the field described 
by Eq. (11) and reconstructed from the hologram when it 
passes through a thin lens.  For simplicity we restrict 
ourselves to the focal plane behind the lens which is of 
particular interest for practical applications.  The center 
of the lens is taken as the origin of coordinates and the 
hologram position is denoted by x

0
 as before (see Fig. 1). 

According to the standard formulas of wave optics, 
the field Uj in the focal plane is determined by the 

integral 
 

Uj(F, ρ) = 
⌡
⌠

 

 
Uj(0, ρ′) exp ⎝

⎛
⎠
⎞

– 
i k ρ′

2

2F ( )– 
i k
2πF  × 

 

× exp [ ]i k (ρ′ – ρ)2

2 F  d ρ′ ,  (16) 

 
where F is the focal length, the first exponent describes the 
phase shift due to the lens, and the remaining multipliers 
represent the standard Green's function of the wave 
parabolic equation.  After substitution of exact expression 
for the scattered field, we obtain the integral  
 

Uj (F, ρ) = 
i k

2π F xj
 
⌡
⌠

 

 
fj ⎝
⎛

⎠
⎞ρj – ρ′

xj
 exp 

⎣
⎡

⎦
⎤– 

i k (ρ′ – ρj)
2

2 xj
× 

 

× exp ⎝
⎛

⎠
⎞

– 
i k ρ′

2

2F  exp [ ]i k (ρ′ – ρ)2

2 F  d ρ′ . (17) 

 
Let us use some additional considerations to calculate 
integral (17).  On the one hand, it should be noted that 
integral (17) will be calculated accurately, if we take 
outside the integral the scattering amplitude, which varies 
slowly in comparison with exponents, and use the known 
formula for a two–dimensional Fourier transform of the 
Gaussian curve  
 

⌡
⌠

 

 
exp ( i α ρ2 – i β ρ) d ρ = 

i π
α  exp ⎝

⎛
⎠
⎞– 

i β2

4α . (18) 

 
As a result, we obtain  
 

i k
2π F xj

 
⌡
⌠

 

 
exp 

⎣
⎡

⎦
⎤– 

i k (ρ′ – ρj)
2

2 xj
exp ( )– 

i k ρ′2

2 F  × 

 

× exp⎣
⎡

⎦
⎤i k (ρ′ – ρj)

2

2 F d ρ′ = 
1
F exp

⎣
⎡

⎦
⎤i k ρ2

2 (F – Xj)
exp⎝

⎛
⎠
⎞– 

i k ρ ρj

F , 

(19) 
 

where Xj specifies the position of the image of the point xj 

on the x axis determined by the lens formula 
 

– 
1
xj

 + 
1
Xj

 = 
1
F . (20) 

 

As could be expected, behind the lens we obtained a 
spherical wave converging towards the point Xj.  The 

second exponent in Eq. (19) takes into account the 
displacement of the particle center from the optical axis by 
way of introducing the exponential multiplier which is 
typical of the Fourier optics. 

On the other hand, the formation of a spherical wave 
behind the lens is the result of construction of the image by 
the trivial ray tracing technique within the framework of 
geometric optics.  The angular function, i.e., the scattering 
amplitude can easy be included into geometrical–optical 
constructions.  It is obvious that the value of the angular 
function remains constant along rays after they have been 
refracted by passing through the lens.  Therefore, expression 
(17) for the field behind the lens, taking into account the 
scattering amplitude, can be written in the same form as 
Eq. (19) but it must be completed by the scattering 
amplitude of geometrical–optical rays intersecting the given 
observation point. 

Finally, in the focal plane the field scattered by 
individual particles takes the form  

 

Uj(F, ρ) = 
1
F fj ( )rF  exp 

⎣
⎡

⎦
⎤i k r2

2(F – Xj)
 exp⎝

⎛
⎠
⎞– 

i k r rj
F . (21) 

 
Now it is easy to write conjugate field (13) in the 

focal plane of the lens.  Actually, the lens transforms 
spherical wave (1) into a spherical wave whose center of 
focusing is determined by lens formula (20).  It is valid for 
both divergent κj < 0 or convergent κj > 0 spherical wave 

incident on the lens.  Similar to Eq. (19), when 
reconstructing the value of the angular function on 
geometrical–optical rays, we obtain 

 

U
∼

j(F, ρ) =( )– 
1
F f *j( )– 

ρ

F exp
⎣
⎡

⎦
⎤i k ρ2

2(F – Kj)
exp⎝

⎛
⎠
⎞– 

i k ρ ρj

F , 

(22) 
 

where Kj is the focal point of the wave U
∼

j behind the lens 

which is found from the formula  
 

– 
1
kj

 + 
1
Kj

 = 
1
F. 

 
It should be noted that when formula (6) is valid, 
 

f *(– Θ)
 
= f(Θ). (23) 

 
4. INTENSITY DISTRIBUTION IN THE  

FOCAL PLANE OF A LENS 

 
The intensity of the field reconstructed from the 

hologram is determined by the sum of the terms 
 

I = ⏐U
0
 + ∑ (Uj + U

∼
j)⏐

2 = 

 

= ⏐U
0
⏐2 + 2Re [U*

0
 ∑ (Uj + U

∼
j)] + ∑ ⏐Uj⏐

2+ 
 

+ ∑ ⏐U
∼

j⏐
2 + 2Re ∑ Uj U

∼
*
j  + 2Re ∑

j≠l

 (Uj + U
∼

j)(U*
l  + U

∼
*
l )  

(24) 
 

Consider the intensity distribution in the focal plane 
of the lens.  The incident field converges to a point on the 
optical axis after passing through a lens; therefore, the first 
two terms are of no interest to us.  The third term, in 
accordance with Eq. (21), is equal to 

I
1
(F, ρ) = 

N

F2 < f ( )ρF
2

>,  (25) 
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where N is the number of particles, and the statistical 
averaging <...> is made over all types of particles. 

As is seen, the intensity distribution in the focal plane of 
the lens given by Eq. (25) is independent of the spatial 
distribution of particles and depends only on their "internal" 
parameters (size, shape, etc.).  Actually, the Fraunhofer 
diffraction on each particle is observed in the focal plane.  If 
all particles are spherical and of the same size, then the 
function I

1
(F, ρ) describes classical fringes of the Fraunhofer 

diffraction by a circular disk.  For brevity, in the general case 
distribution (25) is also referred to as the Fraunhofer fringes. 

It should be noted that formula (25) is basic in the 
small–angle method of determining the particle size. 

Really, if the a priori information about the medium is 
available, the particle size distribution can be found from the 
experimental intensity distribution I

1
(F, ρ).  For example, for 

spherical particles the form of the function ⏐f
R
(ρ/F)⏐2, where 

R is the particle radius, is well known.  Then formula (25) 
can be interpreted as an integral transform of the particle size 
distribution p(R) with the kernel ⏐f

R
(ρ/F)⏐2.  The inverse 

integral transform of the experimental function I
1
(F, ρ) yields 

the unknown function p(R). 
Let us now consider the next terms in Eq. (24).  As 

is seen from Eqs. (22) and (23), the fourth term in 
Eq. (24) fully coincides with the distribution I

1
(F, ρ), 

i.e., the conjugate waves Uj produce exactly the same 

diffraction pattern in the focal plane.  This fact also 
follows from the ray tracing technique of geometric 
optics. 

Consider now the fifth most interesting term in 
Eq. (24) which describes the interference between the 

scattered Uj and conjugate 
∼
Uj waves.  We directly obtain 

 

Ij2 = 2Re (Uj U
∼

*
j) = 

 

= ( )– 
2

F2 fj ( )ρF
2

 cos
⎣
⎡

⎦
⎤k ρ2

2  
⎝
⎛

⎠
⎞1

F – Xj
 – 

1
F – Kj

= 

 

= – 
2

F2 fj ( )ρF
2

 cos ⎣
⎡

⎦
⎤k ρ2 (x

0
 – xj)

F2 .  (26) 

 

Thus the interference between the waves Uj and 
∼
Uj 

produces an interference pattern in the form of the 
Fraunhofer fringes modulated by smaller–scale Fresnel 
fringes. 

As far as we know, the appearance of the Fresnel 
fringes during the reconstruction of holograms of an 
ensemble of particles was not described in the literature, 
with the exception of our publication.4  Let us discuss 
this fact in greater detail. 

As is seen from Eq. (26), the radii of the Fresnel 
fringes are independent of the distance between the lens 
and the reconstructed hologram but depend on the 
distance between a particle and photographic plate during 
the hologram recording.  The radius of the first Fresnel 
fringe is 
 

ρ
1
 = 

F
x

0
 – xj

 
λ (x

0
 – xj)

2  , (27) 

 

i.e.,  this is the radius of the first Fresnel zone on the 
hologram with the scale factor F/(x

0
 – xj). 

When the scattering medium is sufficiently extended 
along the x axis, the Fresnel fringes are no longer 
observed due to averaging.  Therefore, the most sharp 
Fresnel fringes can be observed when the scattering 
medium is either a sufficiently thin layer or a monolayer 
of particles. 

To complete the description of the pattern in the 
focal plane, we must consider the last term in Eq. (24) 
which describes the interference between the fields 
scattered by different particles.  It is clear that due to the 
chaotic phase difference between these waves, the 
interference pattern corresponding to the last term has a 
form of irregular spots (specles) which do not alter, on 
the average, the regular diffraction pattern (I

1
 + I

2
) in 

the focal plane. 
 

 

 
FIG. 2.  Photograph of holographic image of lycopodium particles 
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FIG. 3.  Photographs of two superimposed patterns in the focal plane of the lens.  Exposure increases from (a) to (d) 
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5. EXPERIMENTAL OBSERVATION  

OF THE FRESNEL FRINGES 
 

In the experiment we recorded 40 axial holograms of a 
model medium from different distances.  The model medium 
represented a monolayer of lycopodium particles of radius 
R = (15±0.5) μm.  The holograms were recorded by radiation 
of a He–Ne laser with λ = 0.63 μm collimated into a parallel 
beam 30 mm in diameter.  The dimensions of the experimental 
setup provided the fulfillment of the conditions discussed 
above.  That is, the parameter determining the condition of 
the far field for particles, took the values 0.007 < kR2/(x

0
 –

 xj) < 0.03.  A two–dimensional particle number density 

varied so that the relative area screened by particles was 
within the limits 0.096 – 0.519.  On the one hand, this 
condition provided low intensity of the scattered field 
⏐ω⏐ Ü 1 thereby allowing us to neglect the square term ⏐ω⏐2.  
On the other hand, it provided for statistical independence of 
particle locations, i.e., an ensemble of particles can be 
considered as the Poisson one. The regime of exposure and 
chemical processing of holograms were adjusted to ensure the 
highest quality of the reconstructed image (Fig.

 
2). 

The processed hologram was illuminated by the same 
laser beam.  Behind the hologram there was a lens 150 mm in 
diameter, in the focal plane of which (F = 500 mm) the 
intensity distribution was analyzed using a photodiode 
detector.  Two superimposed patterns were observed in the 
focal plane in complete accordance with conclusions of 
sections 3 and 4.  The "external" pattern completely coincided 
with a small–angle spectrum of radiation scattered directly by 
an ensemble of lycopodium particles and was independet of 
the distances "particles – hologram – lens".  The radius of the 
first dark fringe of the "internal" pattern was related to that 
of the first Fresnel zone for the particles given by Eq. (27), 
and the form of the pattern was described by Eq. (26). 

The essential difference between the intensities of the 
central part and fringes of the external pattern (Airy patterns) 
gives no way to show both superimposed patterns in one 
photograph.  The photographs presented in Fig. 3 were taken 
with increasing exposure, so that the external pattern is 
sharply pronounced in Fig. 3a while the internal pattern in 
Fig. 3d. 

To compare the theoretical and experimental results, it is 
necessary to make expressions (24)–(26) more specific.  For 
the spherical particles under study it can be easy done by 
substitution of an explicit form of the scattering amplitude 

 

fR(ρ / F) = 2J
1
 (k R ρ / F) / (k R ρ / F), (28) 

 

where J
1
 is the Bessel function. 

Satisfactory agreement between the theoretical and 
experimental results is illustrated by Fig. 4.  The local 
disagreements between the calculated and experimental curves 
can be accounted for by the speckle structure in the focal 
plane of the lens.  This fact was discussed in Ref. 4. 

 

 
FIG. 4.  Comparison of the experimental (points) and 
calculated (curve) values of the intensity in the focal plane 
of a lens.  Intensity is in relative units, x

0
 – xj = 35 cm. 

 
Thus the theoretical and experimental results 

presented in this paper show that the intensity 
distribution in the focal plane of the lens contains the 
information not only about geometrical parameters of the 
particles, but also about their spatial distribution.  This 
fact can be used for more complete and efficient 
interpretation of the hologram of the scattering medium. 
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