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A single–layer model of transport of pollutants in the atmospheric boundary 
layer is considered. The model is applied to calculate the long– (up to 1000 km) and 
short–range (about 50 km) transport of various pollutants (regional and local 
models). Results of model calculations are presented and discussed for both models. 

 
1. INTRODUCTION 

 
As a result of industrial and vital activities of human 

society large amounts of gaseous (e.g., carbon monoxide 
CO) and solid (e.g., soot) pollutants are emitted into the 
atmosphere.8,9 Evaporation and erosion cause part of 
industrial wastes, initially collected on the surface or spilled 
over various water areas, enter the atmosphere. Products of 
volcanic eruptions also enter the atmosphere in large 
volumes. 

All that results in changes in the composition of the 
atmosphere,7–9 which from now on includes to a larger and 
larger extent such pollutants of both industrial and natural 
origin. While in the atmosphere, pollutants react with 
natural atmospheric constituents like oxygen O

2
, water 

H
2
O, and so on, as well as with each other forming new 

substances. For example, sulfur dioxide SO
2
 reacts with 

oxygen and then with water to form sulfuric acid. Those 
reactions may be described as follows: 

 

SO
2 
+

 
O

2
 → SO

3
 + O,  SO

3
 + H

2
O → H

2
SO

4
 . 

 

Some atmospheric pollutants and particularly acids, 
being formed in chemical reactions, are exceptionally 
detrimental to all the fauna and flora (fishes perish, forests 
dry up), ferroconcrete structural members (metal is 
dissolved by acids), and harmful to the health of men. 

Atmospheric diffusion (turbulence) results in fast 
spread of pollutants around their sources, and air currents 
transport them at hundreds and thousands of kilometers. To 
undertake counter measures that would prevent undesirable 
consequences of atmospheric pollution, one must calculate 
transport of such pollutants at different distances. This 
problem is treated in the present paper. 

 

2. PROPAGATION OF POLLUTANTS:  
PROBLEM FORMULATION 

 
Two basic approaches to the solution of the above–

indicated problem have found wide use: statistical and 
hydrodynamic.1–6,11,13–15 Further we consider only the 
hydrodynamic approach. 

The hydrodynamic approach is based on the solution of 
the equation of transport (balance) of a pollutant, which we 
consider in the form 
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 + u 
∂s
∂x

 + v 
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– 
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 – 
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 k 

∂s
∂z

 = εa, (1) 

 

where s is the concentration of a given pollutant a; 
εa = εa 

(x, y, z, t) is the source (sink) of that pollutant, 

that is, the rate at which it enters (vanishes from) a unit 
volume; kx 

, ky 
, and k are the eddy diffusion coefficients in 

the directions of the x, y, and z axes; wa is the vertical 

velocity of pollutant. 
In addition to the variable s Eq. (1) includes the 

components of air velocity u, v, and w that may be 
determined independently of s either by direct 
measurements or by solving the equations of hydrodynamics. 
We assume in the present study that the components u, v, 
and w have been already known. We also assume the 
function εa, the quantity wa, and the coefficients kx, ky, 

and k to be prescribed. Then Eq. (1) contains only one 
unknown variable s. To solve that equation, one has to set 
the initial and boundary conditions. 

We take the initial condition in the form 
 

s = s0(x, y, z)  at  t = 0, (2) 
 

where s0 is a prescribed function of the spatial coordinates. 
Equation (1) includes second derivatives with respect to 

the three spatial coordinates x, y, and z. Therefore, to solve it, 
we have to specify two conditions for each coordinate. 
Consider first the conditions at the side boundaries of the 
computational region. For simplicity we assume that Eq. (1) is 
integrated over the region above the horizontal surface z = 0 
and the region of integration has the shape of a rectangular 
parallelepiped bounded by the planes x = x

1
, x = x

2
, y = y

1
, 

y = y
2
, z = z

1
 =0, and z = z

2
. 

We assume the concentration of the pollutant at side 
boundaries to be known, that is, 
x = x

1
, s = sx

1
 
; x = x

2
, s = sx

2
 
; 

y = y
1
, s = sy

1
 
; y = y

2
, s = sy

2
 
.  

 

In the particular case of integration over the infinite 
region we assume that the concentration of pollutant 
vanishes at infinity: 

 

s → 0 ,  for  x → ± ∞,  y → ± ∞ ,  z → ± ∞ . 
 

A value of pollutant concentration, its vertical eddy 
flux, and its vertical velocity are prescribed at the upper 
boundary of the region of integration by the relations 
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s = sH, k 
∂s
∂z

 = QH, w = wH , for z = z
2
 = H. (3) 

 
The most difficult problem is prescribing the 

condition at the lower boundary. It is formulated 
depending on the properties of the underlying surface and 
other factors. The simplest form of the condition at the 
lower boundary is obtained for the water surface. It 
completely absorbs a pollutant reaching it. This property 
may be described as follows:  

 
s = 0,  for z = z

1
 = 0. 

 
In the case of a solid underlying surface two 

opposite processes are simultaneously 
observed: absorption and reflection of a pollutant. 
Consider first the case wa = 0. Then, provided the earth's 

surface totally reflects the pollutant, the condition will 
be written in the form 

 

kz 
∂s
∂z

 = 0 ,  for z = 0.  

 
When the earth's surface only partly reflects the 

pollutant reaching it, a part of that pollutant must be 
absorbed (in the process of "dry absorption"). That part 
of pollutant is equal to βs, where β is the coefficient 
accounting for this process ("accommodation" 
coefficient). In this case the boundary condition assumes 
the form 

 

k z 
∂s
∂z

 – β s = 0 ,  for z = 0.  

 
Now we consider the general case in which a heavy 

pollutant sediments (wa < 0), and there exists the surface 

source of pollutant f
0
 (x, y). The boundary conditions for 

that case are written in the form 
 

kz 
∂s
∂z

 – wa 
s
0
 = β s

0
 – f(x, y) ,  for z = 0 , (4) 

 
where s

0
 is the value of s for z = 0. 

The equation of transport of pollutant (1) is 
nonlinear. Therefore, it can be solved by numerical 
techniques.3 As a result of such numerical integration, we 
obtain a spatiotemporal distribution of concentration of 
the examined pollutant s(x, y, z, t). In addition, the flux 
of pollutant from the atmosphere to the surface can be 
obtained 

 

Q
0
 = k 

∂s
∂z

 – wa 
s = β s. (5) 

 
If several pollutants are simultaneously presented in 

the atmosphere, then the equation of transport is 
integrated separately for each pollutant. 

 
3. EQUATION OF POLLUTANT TRANSPORT FOR 

THE ATMOSPHERIC BOUNDARY LAYER 
 
The major part of various atmospheric pollutants 

(about 70–90% of them) is concentrated in the planetary 
boundary layer (PBL) whose height z = H is about 1 km. 
At the same time, it is its lower part, the internal 
(surface) boundary layer (IBL), whose height z = H

1
 is 

about 30–100 m, in which the vital activity of human 
society takes place. Food is produced in the upper layer 
of soil and in the air layer adjacent to it. That is why 
most studies dedicated to ecological problems consider the 
PBL. 

Below we suggest a special model of transport and 
computational techniques for the calculation of the 
concentration of pollutants contained in that layer. First 
we derive the equation of transport of pollutants in the 
PBL. 

We introduce the parameters averaged over the 
altitude from z = 0 to z = H 

 

s– = 
1
H ⌡⌠

0

H

 s(z) dz,  u– = 
1
H ⌡⌠

0

H

 u(z) dz, and so on .  

 
Let us now integrate Eq. (1) over the altitude with 

boundary conditions (3) and (4). As a result, we find for 
the average parameters 
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We then introduce semiempirical coefficients 
 

α
0
 = s

0 
/ s–,  αH = sH 

/ s– 

 
and on their account rewrite the last equation in the form 
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1
H f

0
. (6) 

 
The function εa entering the last equation is 

determined by the strength of atmospheric emissions from 
various sources (e.g., stacks of industrial complexes) F, 
washing out of pollutants by atmospheric precipitation W, 
and decomposition of the given pollutant in chemical 
reactions R. Therefore, we may write 

 
εa = F – W – R . (7) 

 
In their turn, these functions are assumed to have the 

form 
W = – σ

2
 s ,  R = – σ

3
 s, (8) 

 
where σ

2
 and σ

3
 are the semiempirical coefficients. 

The parameter σ
3
 is related to the intensity of 

precipitation I (mm/h) via the expression σ
3
 = α*I, where 

α* is constant. It is assumed for sulfur and nitrogen oxides 
that σ

2
 = 0.01 h–1. When sulfur dioxide changes to the 

sulfate SO2–
4
 ion, we have σ

3
 = 0.05 h–1. 

Alternatively, Eq. (6) may be rewritten in the form 
 

∂ s–

∂t
 + u– 

∂ s–

∂x
 + v– 

∂ s–

∂y
 + σ s– – 

∂ 
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where  

ϕ=ϕ(x, y, t)=F – 
1
H f

0
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4. REGIONAL SINGLE–LAYER TRAJECTORY 
MODEL 

 
We now introduce the so–called natural coordinates, 

and first define the trajectory of a particle motion in the 
PBL down the average wind. The x axis follows the 
direction of motion at each point of trajectory, while the y 
axis is normal to it. We may denote the new coordinates by 
l and m, respectively. However, for clarity we shall use the 
old notation, assuming at each point of the trajectory that 

x = l, y = m, and u– = u–l , v
– = 0. 

Comparing the orders of magnitude of the second and 
fifth terms in the left–hand side of Eq. (9), we may 
conclude that the latter is small. Keeping that in mind and 

recalling that v– = 0, Eq. (9) may be rewritten in a shorter 
form (below we omit the bar atop the symbols) 

 

∂s
∂t

 + u 
∂s
∂x

 + σs – 
∂ 
∂y

 ky 
∂s
∂y

= ϕ (11) 
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where 
∂r s

∂t
 = 

∂s
∂t

 + u 
∂s
∂x

 is the path derivative for particle 

moving along the trajectory. 
Following Berlyand,6 we assume for the eddy diffusion 

coefficient describing transverse pulsations  
 

ky = k
0
 u, (13) 

 

where k
0
 is a coefficient depending on the atmospheric 

stratification. Then we obtain, instead of Eq. (12) 
 

∂r s/dt + σs – k
0
∂2s/∂y2 = ϕ. (14) 

 

Further we rewrite expression (14) in the form 

s(x, y, t)
 
= s′(x, t) P(x, y) . (15) 

 

Separating the variables for the functions P and s′, we 
obtain 

∂P
∂x

 
– k

0
 
∂2P

∂y2 = 0, (16) 

∂r s

∂t
 + σs′ = ϕ/P. (17) 

 

We shall solve these two equations for isolated sources 
of pollutants that may be described by the Dirac δ–
function. 

Eq. (16) is solved with the following boundary 
conditions: 

 
P = δ(y) for x = 0, and P → 0 for y → ±∞ . (18) 
 

We then have with these conditions 
 

P(x, y) = 1/ 2πk
0 
x exp(– y2/4 k

0 
x) . (19) 

 

The integration of Eq. (17) we make along the known 
trajectory, with the time step Δt and the step Δx along the 
x axis. Applying the explicit scheme in the step with 
number n, we have 

 

s′(n) = (1 – σΔt)s′(n – 1) + Δt(ϕ/P)(n – 1), (20) 
 

where the superscript (n–1) refers to the previous step of 
integration. 

The height of the PBL H may be determined based on 
the theory of the boundary layer.3,12 In the simplest case it 
is assumed that 

 

H = k/l, 
 

where l = 2ω sin ϕ is the Coriolis parameter after 
Panovskii.12 Then we have 
 

H = 0.2 u
*
/l, 

where u
*
 = κV/lnz/z

0
, κ = 0.4, V is the wind speed, and 

z
0
 is the parameter of surface roughness. 

Sometimes the height of the mixed layer10 (HML) 
k

1M
/l, where k

1M
 is the eddy diffusion coefficient at an 

altitude of 1 m, is taken instead of the PBL height. 
According to various estimates, the values of H and 

HML are close and vary from 1500 m or higher in the 
summer daytime to 400 m or lower in the winter nighttime. 

Particle trajectories are calculated step by step from 
the expressions 

∂x
∂t

 = u– (x, y, t), 

 

 
∂y
∂t

= v–(x, y, t) 

 

using the values of wind velocity at the grid nodes and 
following a numerical technique. 

Wind velocities at grid nodes, averaged over H, are 
calculated from the values of pressure at sea level and at a 
pressure altitude of 850 hPa, based on the theory of 
boundary layer.4 

The model was used to calculate the spread of 
pollutant from various point sources for up to 24 hours and 
its average daily concentration at various trajectory points. 

 
TABLE I. Pollutant concentration (μg/m3) vs. the length 
of the trajectory of motion l from a single source and the 
normal distance m from the trajectory at the instant t. 
 

  m, meters 
t, h l, km 0 100 500 1000 
0 0 100 – – – 

2 70 0.142 0.137 0.058 0.004 
6 201 0.074 0.073 0.055 0.021 
12 434 0.042 0.042 0.037 0.024 
18 690 0.028 0.028 0.025 0.019 
24 997 0.020 0.019 0.018 0.015 

Note: s0 =
 
100 μg/m3, H = 1000 m, β = 1 cm/s, and 

σ = 0.88⋅10–5 s–1. 
 
By way of example, Table I lists the results of 

calculations for individual source producing a value of mass 
concentration of 100 μg/m3 at the initial trajectory point. 
Such data may be referred to any pollutant, e.g., to sulfur 
dioxide emitted by the Noril'sk metallurgical plant or to 
radioactive products of a nuclear explosion. Those two 
situations will only differ in strengths of their sources and 
trajectories of pollutant transport as well as in the 
parameters of the models. 
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One can see from that table, how the pollutant mass 
concentration changes while moving along the trajectory on 
the "jet axis" and across it. 

For example, 24 hours later the mass concentration at 
a distance of 997 km from the source dropped to 
0.02 μg/m3, being equal to 0.02% of its initial value. It is 
also interesting to note that, due to cross–diffusion, mass 
concentration of the substance 24 hours later at a distance 
of 1 km from the jet axis is no longer different from its 
axial value. 

 

5. LOCAL MODEL OF THE POLLUTANT 
TRANSPORT  

IN THE INTERNAL (SURFACE) LAYER 

 

There exists in the lower part of the planetary 
boundary layer the so–called internal surface layer (ISL) 
whose depth is about 30–100 m. The theory of surface 
boundary layer holds that wind direction in it remains 
unchanged, and the wind speed is expressed by relation 

 

u(z) = (u
*
/κ) ln (z + z

0
)/z

0
, 

 

where κ = 0.4, z
0
 is the parameter of roughness, 

u
*
 = ldu/dz is the dynamic wind speed, l = κ (z + z

0
) is 

the mixing length (for stratifications close to neutral), and 
k = l2 du/dz is the eddy diffusion coefficient. 

When the wind speed is known at some level z
2
 (e.g., 

z
2
 = z

10
 = 10 m is the level of wind vane), we have 

 

u(z) = u
10

 ln [(z + z
0
)/z

0
] / ln [(z

10
 + z

0
)/z

0
] , 

k(z) =
 
k

0
 + az, k

0
 = az

0
, a = κ2u

10
 ln [(z + z

0
)/z

0
]. (21) 

 

According to Ref. 10, the depth of the IBL is  
 

H
1
 
= H

IBL
 = 

k
1

10 l 
, 

where k
1
 is the eddy diffusion coefficient at an altitude of 

1 m, which depends on the class of stability of 
stratification. Note that k

1
 ∼ 0.1 m2/s for the daytime 

(neutral) stratification, while k
1
 ∼ 0.05 m2/s for the 

nighttime (stable) stratification. To give an example, at 
ϕ = 70°, l = 0.139⋅10–3 s–1, and k

1
 = 0.1 m2/s we find 

H
1
= 72 m. More accurate characteristics of the IBL may be 

found on the basis of the Monin–Obukhov theory. 
We consider below a mesoscale region with the 

horizontal dimension L ∼ 50 km. Wind direction in such a 
region may be assumed constant. 

We direct the x axis along the wind and integrate the 
equation of transport from z

0
 to H

1
. We introduce the 

parameters 
 

s– = 
1
H

1
 ⌡⌠
z
0

H
1

 s(z) dz,  u– = 
1

H
1
 ⌡⌠
z
0

H
1

 u(z) dz 

 
averaged over the IBL. 

Integrating the expression for u(z), we find for the 
average speed 

 

u– =
 
u

10
 ln 

H
1
 + z

0
z
0

 / ln 
z
10

 + z
0

z
0

, (22) 

 

where u
10

 is the wind speed at the vane level. Then in 

analogy with the regional model we obtain the equation for 
the average parameters of the IBL similar to Eq. (14), 
which is transformed, via substitution of Eq. (15), into 
Eqs. (16) and (17) for the functions P and s′. 

For individual sources described by the δ–function, 
the solution of equation for the function P is expressed in 
the form of Eq. (19). 

Now, provided the direction of wind remains constant, 
the solution of the equation for variable s' is found in 
analytic form. 

We consider the stationary case (∂s/∂t = 0) first. Then 
the equation for s' assumes the form 

 

∂s′

∂x

 
+ 

σ

u–
 = 

ϕ(x)

u–(P)
. 

 
For x = 0 and s' = s0' = s0/P its solution has the form 
 

s′(x) = exp( – σx/u–) ⎣
⎡ 
 

s0′ + ⌡⌠
0

x

 exp( σx′/u–) 
ϕ(x′)

u–P ⎦
⎤ 

 
dx′ . (23) 

 
The solution for the nonstationary case is reduced to 

that for the stationary case by way of introducing the new 
variables 

x
1
 =

 
x – u t,     t

1
 = t. 

 
The corresponding solution for s' will be written in the 

form 

s′(t
1
) =

 

exp( – σt
1
) ⎣
⎡ 

 
s0′ + ⌡⌠

0

t
1

 exp( σt
1
) ϕ(t

1
′) ⎦

⎤ 

 
dt

1
′ . 

 
Solution (23) on account of Eqs. (19) and (15) was 

used to calculate the mass concentration of reference 
pollutant (e.g., sulfur dioxide) when several ground–based 
sources were present on the trajectory. We assumed s

0
 = 0 

for x = 0, that is, at the origin of coordinates. 
An example of such computational results is given in 

Table II. 
 
TABLE II. Pollutant concentration (μg/m3) vs. the 
distance x from the origin of coordinates and the distance 
y from the jet axis for three ground–based point sources. 
 

  y, m 

x, km f
0
, μg/m2⋅s 0 50 100 300 500 

0 0 – – – – – 

6 500 15.10 13.54 9.91 0.35 0 
12 0 8.88 8.43 7.21 1.36 0.49 
16 400 13.13 12.63 11.23 3.22 0.26 
18 0 11.66 11.26 10.15 5.34 0.36 
20 500 12.47 16.93 15.42 5.67 0.77 
32 0  9.63  9.45  8.91 4.77 1.37 
50 0  4.49  4.47  4.27 2.86 1.27 

Note: s0 = 0, H
1
 = 100 m, β = 1 ñm/s, u– = 10 m/s, and 

z
0
 = 10 ñm. 

 
It follows from the table that when air moves over the 

ground–based sources, the mass concentration of pollutant 
sharply increases. For example, the mass concentration of 
pollutant on the jet axis reached 15 μg/m3 above the first  
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ground–based source whose strength was 500 μg/m3 (a 
small heat–and–power station), and 17.5 μg/m3 above the 
third ground–based source. The concentration quickly 
decreases with distance from the sources. At a distance of 
30 km from the last source mass concentration dropped to 
4.5 μg/m3. It is seen from Table II that although mass 
concentration off the jet axis becomes much lower, it 
remains noticeable. 
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