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Turbulent exchange and admixture transport by vertical ordered fluxes (a 
convective inflow) play an important role in spatial distribution of atmospheric 
admixtures and time variation of their concentration. Parametrization of a 
turbulent coefficient has been made and a model of vertical distribution of 
admixture concentration, wind velocity, and air temperature in the ground layer of 
the atmosphere has been constructed based on representations of the theory of 
similarity and dimensionality. The model is in good agreement with the 
experimental results and allows one to determine the effect of different factors on 
the admixture concentration profile. 

 
The problem of polluting the atmosphere of a big 

city (with population larger than 0.5–1.0 million) by 
traflic emissions and other industrial processes is the most 
urgent in ecology. Although a vast literature material can 
be found on this problem (e.g. Refs. 1, 2, 5–9, 14) there 
exist many problems that call for further development 
and investigation. 

According to the equation of the inflow of polluting 
substances (admixtures) into the atmosphere 
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the rate of temporal variation of concentration q at a 
fixed point in space is determined by: a) an advective 
flux (the first term in the right–hand side, where u and v 
are projections of wind velocity onto the horizontal axes 
x and y); b) a convective flux (the second term, where w 
is the component of vertical along z axis speed of 
substance transport); c) a flux of the admixture under the 
effect of horizontal and vertical turbulent exchange (ks 

and kz are the coefficients of turbulence); and d) decrease 

of polluting substance due to its sink (capture) on 
droplets and crystals of clouds, fogs, and precipitation or 
due to radioactive decay (τ is the time of relaxation or 
the time of substance half-decay). 

An advective inflow of admixture is estimated from 
the data on distribution of q and wind velocity (u, v) 
over a horizontal plane. An admixture inflow under the 
effect of horizontal exchange is usually estimated 
assuming normal (Gaussian) distribution along a 
horizontal direction.4 

In general, the solution of Eq. (1) which should be  
combined with the equations of motion (to determine u 
and v), the equation of continuity (for w) as well as some 
additional relations (to calculate kz, ks, and τ) can be 

constructed only by numerical methods on big computers 
under certain boundary and initial conditions. The 
principle problems on constructing models of propagation 
of admixtures coming into the atmosphere from different 
sources were discussed elsewhere.1,9,13 

In this paper we dwell on parametrization of the 
convective and turbulent (in vertical direction) inflows of 
an admixture, which play a decisive role in vertical 
transport of the admixture and therefore in formation of 
pollution levels near the earth's surface. 

Vertical Turbulent Exchange. It is known4,11 that in 
the ground layer of thickness h between 50–100 and 250–
300 m distribution of wind velocity, temperature, and 
admixture concentration is described by equations with an 
error not exceeding 10%: 

l dc/dz = u
*
; (2) 

 
l dθ/dz = θ

*
; (3) 

 
l dq/dz = q

*
, (4) 

 

where c = u2 + v2 is the absolute value of wind 
velocity; θ is the potential temperature; u* is the dynamic 

speed (speed scale); θ* = – Q
h
(0)/(cpρu*),  

q* = – Qq(0) / (ρu*) are the scales of θ and q (more 

accurate, scales of variations of θ and q within the ground 
layer); Q

h
(0) and Qq(0) are turbulent fluxes of heat and 

admixture near the earth's surface; ρ is the air density; 
and cp is the specific heat of air. 

The parameter l in Eqs. (1)–(3) is the path of mixing of  
turbulent moles related to the coefficient kz through the 

relation 
 
kz = l u

*
. (5) 

 
According to the similarity theory developed by 

Prandtl and Karman for incompressible liquid (as applied 
to the atmosphere, of neutral or equilibrium 
stratification) and generalized in Ref. 10 for 
nonequilibrium stratification, the path of the mixing can 
be represented as 
 

l = – κ 
dc / dz

d2c / dz2 f(Ri) (6) 
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where f(Ri) is the unknown function of the Richardson 
number 

Ri = 
g
T 

dθ / dz

(dc / dz)2; (7) 

 

κ = 0.38 is the Karman constant; g is the acceleration due 
to gravity; and T is the air temperature. 

With the account of Eqs. (2) and (3) the expression 
for Ri takes the form 
 

Ri = (g/T) l θ
*
/u2

*
 (8) 

 

If now Eq. (2) is differentiated with respect to z: 
 

dl
dz 

dc
dz

 
+ l 

d2c

dz2 = 0, 

 

and the obtained expression for d2c / dz2 is put into 
Eq. (6), then, taking into account Eq. (8), we obtain 
 

dl/dz
 
= κ f (l/κ

 
Z
*
), (9) 

 

where the Monin-Obukhov scale Z
*
 is introduced, which, as 

follows from Eq.(8), has the form 
 

Z
*
 = 

u2

*
k (g/T) θ

*
 =
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*
k (g/T) q

θ
 (0) . (10) 

 

In the case of equilibrium (neutral) stratification, 
where the flux Q

θ
(0) and the number Ri are equal to zero 

(Ri = 0), the function f(Ri) should be taken to be the unit: 
f(0) = 1, since formula (6) must coincide here with the 
known Prandthl–Karman formula. 

Let us now present the function f as a series expansion 
truncated at small values of the first order 
 

f (l/κ Z
*
)
 
=
 
1 – l/κ Z

*
 . (11) 

 
When Ri approaches to zero, Z* approaches to ±$ and f(Ri) 

approaches to unit. 
Equation (9) takes the form 

 

dl/dz
 
= κ (1 – l/κ Z

*
) . (12) 

   
By integrating this equation from z = 0, to arbitrary z 

and l values, and assuming l = l
m
, we obtain 

 

l(z) =
 
κ Z

*
 [1 – (1 – l

m
/κ Z

*
) exp (– z/Z

*
)] . (13) 

 

Here, l
m
 is the path of mixing (molecular) in the immediate 

vicinity to the earth's surface (in a viscous sublayer) which are 
several orders of magnitude smaller than Z

*
. Therefore the 

ratio l
m 

/ κ L* can be neglected in comparison with unit. 

The height dependence of the turbulence coefficient kz, 

according to Eqs. (5) and (13), is described by the formula 
 

kz =
 
κ u

*
 Z

*
 [1 – exp (– z/Z

*
)] . (14) 

 

To derive formulae describing the vertical distribution 
of c, θ, and q we introduce a new variable instead of z: 
 

η(z) =
 
exp (– z/Z

*
) – 1 . (15) 

 

In new variables the Eqs. (1)–(3), with l determined 
from the relation (13), take the form 
 

dc = (u
*
/κ) (dη/η) ; (16) 

 

dθ = (θ
*
/κ) (dη/η) ; (17) 

 

dq = (q
*
/κ) (dη/η) ; (18) 

 

Integrating these equations within the limits from the 
level of roughness z

0
 to an arbitrary height z we obtain 

 

c(z) = (u
*
/κ) ln(η/η

0
) , (19) 

 

θ(z) = θ
0
 + (θ

*
/κ) ln(η/η

0
) , (20) 

 

q(z) = q
0 

+ (q
*
/κ) ln(η/η

0
) , (21) 

 

where θ
0
 and q

0
 are the values of θ and q at the level of 

roughness z
0
 (the wind velocity at this level, according to 

its definition, vanishes), η
0
 = exp(z

0
/Z

*
 )– 1. 

The formulae (13)–(14) and (19)–(21) are in good 
agreement with the experimental results as well as with those 
regularities of the layer structure well established, by now, in 
numerous investigations. Using these formulae, as a particular 
case, it is easy to derive some known expressions that 
approximate universal functions of the similarity theory (in 
particular, a logarithmic law and "logarithmic plus linear" 
one). 

The formulae (19)–(21) describe distribution of 
meteorological parameters in the ground layer both under 
unstable (Ri < 0, Z

*
 < 0) and stable (Ri > 0, Z

*
 > 0) (in 

particular, inversion) stratifications. However in fog or 
without it, in big cities there often occur formations of the so-
called elevated temperature inversions. Thus in Moscow, on 
the average, 44% observations show the presence of elevated 
inversions and only 13% observations show the presence of 
near ground inversions (in a small town Obninsk this ratio is 
quite different: 15% – elevated and 38% – near ground 
inversions). 

The frequency of ocurrence of the temperature inversions 
that create particularly high levels of pollution is sufficiently 
high: it is, as a rule, more than 50%, and in some cases it is 
70%–80%. In this connection the formulas describing 
distribution of c, θ, and q during the formation of elevated 
temperature inversions should be refined. 

Our measurements showed that in the layer from the 
earth's surface to the bottom z* of the elevated temperature 
inversion the temperature profile is close to the adiabatic one, 
and most frequently to the moist–adiabatic (γ ≈ γ

m ad
), since in 

this layer water vapor is close to the state of saturation. As a 
consequence, in the layer between z

0
 and z* the distribution of 

c and q are described using the logarithmic formulae 

c(z) =
 
(u

*
/κ) ln(z/z

0
) ; (22) 

q(z) =
 
q

0
 + (q

*
/κ) ln(z/z

0
) ; (23) 

In the inversion layer (between z* and h) vertical 
distributions of c, θ, and q are described by Eqs. (19)–(21). 

Above the ground layer whose depth h can be assumed 
to be an absolute value of scale Z

*
 (according to its 
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definition) the coefficient kz does not, in fact, change with 

height. Thus for z > h, as follows from Eq. (14), we have 
 

kz ≈ kz(h) = κ u
*
 Z

*
 (1 – e–1) ≈ κ u

*
 Z

*
 ; at Ri > 0 (Z

*
 > 0) , 

kz = kz(h) = κ u
*
 Z

*
 (1 – e) ; at Ri < 0 (Z

*
 <0) , (24) 

 

where e = 2.72... is the base of natural logarithms. 
Convective Inflow of an Admixture.  This inflow is 

formed due to ordered vertical motions that, in turn, are 
caused by convergence of air currents in a horizontal plane 
(wind velocity divergence). The integration of the 
continuity equation over height yields the relation for 
vertical velocity w: 
 

w = – ⌡⌠
0

z

 
 (∂u/∂x + ∂v/∂y) dz . (25) 

 

In the regions of lower pressure (cyclones and troughs) 
under the frictional force (in combination with pressure 
gradient and Coriolis force) there exists convergence of air 
flows (divergence of wind velocity is less than zero) and, 
hence, ascending vertical motions (w > 0). In the regions 
of higher pressure (anticyclones and crests) there occurs the 
horizontal convergence of flows (∂u / ∂x + ∂v / ∂y > 0) and 
descending vertical motions (w < 0). 

In big cities, the ascending motions appear, in 
addition, under the effect of a heat region (island) (the 
effect of the force of buoyancy). 

In the general case, in order to determine w from 
Eq. (25) one should use the motion equation. In this case, 
we obtain very cumbersome relations. To derive simpler 
expressions for w, providing the required accuracy, we make 
use of an obvious fact (supported also with quantitative 
estimates) that the largest absolute values of wind velocity 
divergence are observed near the earth's surface (where the 
frictional force is also maximum) and the divergence 
decreases with the height increase. Since the exact law of 
this decrease is not known, we use the simplest and most 
reasonable assumption that the wind velocity divergence is a 
linearly decreasing function of height: 

 

∂u/∂x + ∂v/∂y = a – b z . (26) 
 

Analysis of the aforementioned cumbersome relations 
for w derived first in Ref. 3 shows that the vertical velocity 
equals zero on a plane earth's surface (outside the 
mountains) increases in the lower troposphere with the 
height z increase, reaches its maximum wm at some height 

zm (in the middle troposphere), then it decreases and 

vanishes for the second time in the upper troposphere. 
The relation (25) with the change of divergence 

determined by Eq. (26) takes the form 
 

w = – z (a – b z/2) . (27) 
 

According to this condition w reaches its maximum equal 
to wm when z = zm, therefore ∂w/∂z = –(a – bzm) = 0 and 

wm = –zm(a – bzm/2); hence, b=–2wm/z2
m and a=–2wm/zm, 

and the relation (27) takes the form 
 

w(z) = 2 wm (z/zm) (1 – (z/zm)) . (28) 
 

Vertical velocity vanishes when z = 0, and when 
z = 2 zm. Most frequently, zm = Ht/2 is used where Ht is 

the tropopause height. 

The maximum absolute value of the vertical velocity 
is reached at the upper boundary of the layer within 
which the velocity divergence keeps the same sign. In 
particular, with ascending motion (wm > 0) in the layer 

between the earth's surface and the level zm we observe 

the negative divergence (convergence) and with 
descending motion the divergence is positive. Since the 
velocity divergence keeps, as a rule, its sign within the 
atmospheric boundary layer, it follows that wm coincides 

with the vertical velocity w
H
 formed at the upper 

boundary H of the boundary layer under the effect of 
divergence (convergence) of an air flow in this layer. 

Using the motion equation in the boundary layer and 
the relation (25) it is easy to notice that the formula for 
w

H
 has the form 

 

w
H
 = 

1
2 ωz ρH

 ⎣
⎡

⎦
⎤∂τy(0)

∂x
 – 

∂τx(0)

∂y
 , (29) 

 

where τx(0) = (ρkz∂u/∂z)
0
 and τy = (ρkz∂v/∂z )

0
 are the 

components of the turbulent friction stress near the 
earth's surface; 2ωz is the Coriolis parameter. 

The method of calculating these components as well 
as some other characteristics of the ground and boundary 
layers is described elsewhere.11,12 Here we give only the 
Dyubyuk formula obtained assuming the height 
independence of kz within the entire boundary layer: 

 

w
H
 = D ∇2

 p
0
 , (30) 

 

where ∇2p
0
 = ∂2p

0
/∂x2 + ∂2p

0
/∂y2 is the air pressure 

Laplacian at the level of the earth's surface (z = 0), 
D = (kz/2)1/2/(2ωz)

3/2ρ
H
. 

In conclusion, let us give the solution of Eq. (1) for 
one of the simplest case. This solution allows one to 
elucidate qualitatively the role of meteorological 
parameters in formation of the pollution levels of the 
atmosphere over a city. 

Since the left–hand side (∂q/∂t) and the advective 
inflow in the right–hand side of Eq. (1) has, as a rule, 
the same sign and the same order of magnitude, we can 
neglect them as the first approximation. Such an 
assumption is all the more justifiable, if the admixture 
concentration averaged over the city and over certain time 
interval is considered. In this averaging, the inflow due 
to horizontal mixing is also excluded. Thus, Eq. (1) takes 
the form 

 

d
dz kz 

dq
dz – w 

dq
dz – 

q
τ
 = 0 . (31) 

 

In the general case the solution to this equation can 
be sought only numerically. 

Above the ground layer kz is practically constant 

with height kz = kz(h) = const. The assumption of height 

independence of w and τ is less justified. Nevertheless, 
the dependence of admixture vertical distribution on 
meteorological conditions that has been stated based on 
this assumption is in a good agreement with the 
experimental results and qualitative-physical 
representations. 

By introducing a new function 
 

q*(z) =
 q(z) exp[(– w–/2 kz(h)) (z – h)] , (32) 
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equation (31), after the replacement of q(z) for q*(z) in it, 
is reduced to 

 

d2q*(z) / dz2 – b2q*(z) = 0 , (33) 
 

where 
 

b2 = (w
–/2 kz(h))2 + 1/τ kz(h) , (34) 

 

w– is the mean value of w over the height in the layer 
between h and H; kz(h) is the coefficient kz at the upper 

boundary of the ground layer determined from Eq. (24). 
The solution of Eq. (33) has a well–known form 

q*(z) = A exp [b (z – h)] + B exp [– b (z – h)] . 
 

Taking into account the relations (32) the expression 
for q(z) is written as follows  

q(z)=exp 
⎣
⎡

⎦
⎤

⎝
⎛

⎠
⎞w–

2 kz(h)
 + b (z – h) {A+B exp [–2b (z – h)]}. (35) 

 

The integration constants A and B are determined from 
the following conditions: 

q(h) = q
h
 
 
and  q(H) = q

H
 , (36) 

where q
h
 is the value of q at the upper boundary of the 

ground layer h = ±Z
*
 determined by the formula (21); q

H
 is 

the value of q at the level H that is taken as the upper 
boundary of the boundary layer, where the admixture 
concentration is small compared to q

h
 (which is, e.g., 

0.01qh). It can be assumed, without a large error that H is 

equal zm = Ht/2 or to the doubled height of the Ekman 

boundary layer H = 2π kz(h)/ωz. 

Determining the constants A and B from the conditions 
(36) we reduce the solution of Eq. (35) to the form 
 

q(z) = exp 
⎣
⎡

⎦
⎤

⎝
⎛

⎠
⎞w

2 kz(h) + b  (z – h)  × 

 

× 
⎩
⎨
⎧

⎭
⎬
⎫

q
h
 + 

q
h
 – q

H
 r

1

1 – r
2

 [ ]exp ( – 2 b (z – h)) – 1 , (37) 

where 
 

r
1
=exp 

⎣
⎡

⎦
⎤– 

⎝
⎛

⎠
⎞w–

2 kz(h)
+b  (H – h) ;  r

2 
= exp [– 2 b (H – h)] . 

 

In a particular case, when there is no washing-out of 
admixtures with clouds and precipitation (τ → ∞) and 
radioactive decay formula (37) takes the form 

q(z)=q
h 
+ 

q
h 
– q

H

r–1  
⎩
⎨
⎧

⎭
⎬
⎫

1 – exp 
⎣
⎡

⎦
⎤ 

w–

2 kz(h) (z – h)  , (38) 

 

where 
 

r = exp [w– (H – h)/kz(h)] . 

It should be noted that the solution of Eq. (37) can 
take into account the effect of both nonstationarity and 
an advective admixture inflow. It is sufficient to assume 
that ∂q/∂t + u∂q/∂x + v∂q/∂y = q/τ′, where τ′ is the 
relaxation time taking into account these factors 
(nonstationarity and advection). 

 

The last parameter in Eq. (1), the relaxation time τ, is 
a complicated function of size of admixture particles and 
cloud, fog, and precipitation droplets. This is the most 
important problem in aerosol mechanics. Let us consider 
here the data on the values of τ determined for clouds and 
precipitation assuming that the distribution density of cloud 
droplets and admixture particles is described by the 
following expressions: 
 
f(R) = 4(R/R

m
)2exp (–2R/R

m
); f(r)=4 (r/r

m
)2exp(–2r/r

m
); 

 
where R and r are the radii of droplets and particles, 
respectively; R

m
 and r

m
 are the radii of droplets and 

particles at which the function f reaches its maximum. 
For some mean values R

m
 and r

m
 and moderate 

intensity of precipitation the following values of relaxation 
time τ were obtained11 (in hours):  

 
Rain: 

drizzle  shower  moderate   heavy 

0.6  0.8   0.9   1.5 

Clouds: 
stratus  nimbostratus  stratocumulus fog 

1.2  0.8 0.6 0.5 

 
The above described parametrization of the principal 

mechanisms of propagation of polluting substances has been 
used in developing numerical models for forecasting 
ecological situations in big cities. 
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