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In this paper we present analytical solutions of the Bloch equations for a two–
level medium excited by a strong resonant field with periodic amplitude modulation 
obtained by the technique of matrix exponent that obviates the need for operation on 
continued fractions. Using this approach we calculated the coefficients of absorption 
of a probe field in two particular cases of bichromatic and trichromatic pumping. It is 
shown that in contrast to trichromatic pumping the spectrum of the coefficient of 
absorption of the probe field for bichromatic pumping has no Rabi resonances while 
exhibits resonances at frequencies multiple of the intermode spacing of the pump field. 
Conditions for initiation and frequency regions of negative absorption (amplification) 
of the probe field are determined in this paper for both types of pumping. 

 

General solutions of the Bloch equations which 
describe resonance interaction of a two–level medium with 
a polychromatic field (i.e., the field whose amplitude is 
periodically modulated in time) were obtained by Toptygina 
and Fradkin1 using the Floquet theorem. This method was 
used for solving the Bloch equations with periodic 
coefficients in 1982 (see Ref. 2). Along with indisputable 
advantages, it has two substantial disadvantages: first, it 
can be used only for equations with periodic coefficients, 
second, to calculate the amplitudes of harmonics in terms of 
which the solutions are expressed, it is necessary to add 
numerically weakly convergent continued fractions. 

The matrix method for solving the Bloch equations3 
enables one to obtain analytic solutions not only for 
periodic but also for arbitrary type of modulation of the 
exciting field parameters.4 Moreover, this method obviates 
the need for the summation of continued fractions.  

In this paper we give analytic solutions of the Bloch 
equations for resonance excitation of a two–level medium 
by a field consisting of two or three strong monochromatic 
components (a bi– or trichromatic field, respectively). Then 
we calculate the absorption coefficient of a weak field 
which probes into the transition saturated upon exposure to 
the aforementioned fields and determine frequency regions 
in which the absorption of the probe field is negative, i.e., 
there occurs its amplification. 

So, let a two–level medium (a system of two–level 
atoms) be excited by a field whose electric component can 
be written in the form 
 

ε(t) = E(t) cos ω t , (1) 
 

where E(t) is the amplitude which periodically depends on 
time and ω is the angular frequency being equal to that of 
transition between the levels. The equations describing time 
dependence of the density matrix elements of the two–level 
medium in the dipole–interaction approximation for the 
rotary wave (the Bloch equations) have the form5  
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,  f(t) = dE(t)/� , 

 

where u(t), v(t), and n(t) are the standard components of 
the Bloch vector in the rotating system of coordinates (u(t) 
and v(t) determine polarization of the medium in the 
external field and n(t) determines the difference between 
populations of atomic levels); n

0
 is the equilibrium level 

population difference; d is the dipole moment of transition 
between the levels of a two–level atom; and, Γ 

–1
1,2

 are the 

times of relaxation of population and polarization of the 
medium, respectively. 

In some particular cases the dependence of the 
envelope E(t) of the solution of the system of equations (2) 
can be obtained in an analytical form. For example, for 

 

E(t) = E
0
 (1 + 2 cos Ω t ) (3) 

 

field (1) can be represented as a sum of three 
monochromatic components with the same frequency shifts 
Ω between the neighboring components and the frequency of 
the central component ω (the so–called trichromatic field). 
The case 
 

E(t) = 2 E
0 
cos Ω t (4) 

 

corresponds to the so–called bichromatic field (Eqs. (4) and 
(3) differ only in the absence of the central resonance 
component). 

Substituting Eq. (3) in the solution of the Bloch 
equations for arbitrary amplitude E(t) and assuming, for 
simplicity of calculations, the equality Γ

1
 = Γ

2
 = Γ, we 

obtain analytic solutions in an explicit form for a 
trichromatic exciting field 
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For bichromatic exciting field (4) the solutions have 
the form  
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where  
 

L
1
(m) = Γ/(Γ2 + m2 Ω2) , L
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It should be noted here that the analogous solution 
for a bichromatic exciting field (the case of the so–called 
fully amplitude–modulated excitation) in the form of 
expansion in the Bessel functions was obtained in Ref. 8. 
However, these solutions can be represented in an explicit 
form only for two limiting cases: very weak and very 
strong excitating fields when one can neglect relaxation 
in comparison with Rabi frequency (i.e., in the 

approximation Γ n Ω
R
). Our solutions (8) and (9) are  

valid for arbitrary intensity of exciting field and for 
Γ → 0 they coincide with the solutions derived in Ref. 8.  

By comparing solutions (5)–(6) and (8)–(9), it is 
readily seen that the spectrum of undamped oscillations of 
the Bloch vector components for bichromatic excitation 
contains an infinite set of harmonics at the intermode 
frequency Ω. For n(t) it is a set of even and for ν(t) a set 
of odd harmonics. For a trichromatic exciting field, both 
ν(t) and n(t) contain an infinite set of even and odd 
harmonics Ω. One more difference between trichromatic 
and bichromatic excitation is as follows [as seen from 
Eq. (7)]. In the first case the harmonic amplitudes 
increase resonantly when Ω

R
 = ±mΩ (the conditions of 

the so–called Rabi resonance), and in the case of 
bichromatic excitation these resonances are absent. 

Figure 1 depicts a plot of the time–averaged level 

population difference n– vs. the intermode spacing Ω 
which was calculated numerically from Eqs. (6) and (9). 
Trichromatic excitation (curve 1), in contrast to a 
bichromatic one (curve 2) leads to Rabi resonances in the 

spectrum of n–. Common to these solutions is that n–(Ω) 
does not take negative values for any value of detuning of 
the atomic transition frequency from the radiation 
frequency, i.e., it is impossible to obtain the field 
amplification. Such negative absorption (amplification) in 
a two–level medium can appear only for a weak probe 
field when the resonant transition is saturated upon 
exposure to a strong field. 

 

 
 

FIG. 1. Time–averaged level population difference n– vs. 
the intermode spacing Ω for trichromatic (1) and 
bichromatic (2) excitation. 
 

In Ref. 3 the analytical expression for the polarization 
of a medium in a weak probe field at variable frequency 
with simultaneous excitation of this medium by a strong 
trichromatic field at fixed frequencies was derived, the 
absorption coefficient of this probe field was calculated, and 
the frequency regions in which this absorption becomes 
negative were found. In the present paper we show that 
bichromatic pumping, in contrast to trichromatic one, 
results in the substantially different spectrum of the 
absorption coefficient of a probe field. For the field of the 
type ε(t) = 2E

0
 cosΩ t cosω t + ε

0
 cos(ω + δ)t, where 

ε
0
 n E

0
 and ⏐δ⏐ n ω is the weak field detuning from 

resonance, an analytical expression for the components of 
the Bloch vector and hence for polarization of the medium 
induced by this field can readily be obtained using the 
method described in Ref. 3. 

The derived expressions are too cumbersome, and we 
present here only the spectra of the absorption coefficient of  



 

the probe field obtained using these solutions for two 
values of the amplitude of strong bichromatic pumping: 
Ω

R
 = 10Γ and Ω

R
 = 20Γ (curves 1 and 2 in Fig. 2, 

respectively).  
An imaginary part of the medium polarizability 

Im χ(δ), induced by a probe field, which is directly 
proportional to the absorption coefficient of the external 
field (see, e.g., Ref. 6, where the absorption coefficient 
κ(δ) = ω Im χ(δ)/(n c N), n is the refractive index of the 
medium, c is the light speed in vacuum, and N is the 
density of absorbing atoms), for trichromatic saturation of 
the transition, is given in Fig. 3 for Ω

R
 = 10Γ = Ω. 

 

 
 

FIG. 2. Imaginary part of polarizability of a medium 
induced by a probe field for bichromatic pumping at 
Ω

R
 = 10Γ (1) and 20Γ (2). 

 

 
 

FIG. 3. Imaginary part of polarizability of a medium 
induced by a probe field for trichromatic pumping at 
Ω

R
 = 10Γ. 

 
The following conclusions can be drawn from the 

comparison of these plots: 
1. For bichromatic pumping (without resonance 

component) the spectrum of an imaginary part of the 
medium polarizability Im χ(δ) determining the probe field 
absorption exhibits resonances in the vicinity of detunings 
δ = mΩ, m = 0, ±1, ±2, ... (intermode resonances). In the 
vicinity of δ = Ω the absorption has a dispersive character 
and for the remaining m the absorption curve has the 
Lorentz shape. In this case Im χ(δ) and hence the  

absorption are negative in the vicinity of δ = 0 and 
δ = ±Ω. The negative absorption reaches maximums in the 
vicinity of exact resonance. It should be noted that the 
stronger is pumping, the smaller is the value of negative 
absorption. It is accounted for by the fact that for exact 
resonance the weak field, being added to pumping, 
additionally promotes the transition saturation. The 
stronger is pumping, the closer is the medium to 
saturation and hence the weaker is absorption of the 
external field. 

2. The dependence of the spectrum of an imaginary 
part of the polarizability of a medium induced by a probe 
field on detuning for trichromatic pumping is more 
complicated. First, the resonances appear at 
δ = mΩ = mΩ

R
, i.e., intermode resonances in this case 

coincide with Rabi resonances. It should be noted that 
these Rabi resonances occur when δ coincides with 
harmonics of the Rabi frequency Ω

R
, while the Rabi 

resonances in the components of the Bloch vector of a 
medium excited by a trichromatic field (without a probe 
field) are observed when the intermode frequency Ω 
coincides with subharmonics of the frequency Ω

R
 (see 

Ref. 7). The spectrum has a dispersive character in the 
vicinity of all resonance values of δ (as it should be for 
strong trichromatic pumping7). The regions of negative 
Im χ(δ), i.e., regions of negative absorption become 
pronounced in the vicinities of the Rabi resonances. In 
the case of exact resonance (δ = 0) a weak field is added 
to a resonance component of pumping thereby also 
promoting the transition saturation. The negative 
absorption is lacking in this case. The widths of all 
resonance lines are the same and exceed the widths of 
lines for trichromatic pumping with the same values of 
the parameters. 

When detunings δ > 3Ω, probe field no longer 
induces transitions between the levels, and the system is 
in the state of saturation caused by strong pumping. 

Thus the maximum amplification of the field with 
periodically modulated amplitude should occur in the case 
of saturation of a two–level medium (e.g., in a laser 
cavity) in a polychromatic field when the frequency of 
the transition between the levels of the medium lies in 
the middle between the neighboring spectral components 
of the field. 
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