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In this paper we present a spatiotemporal model of the sea swell surface 
constructed based on the spectral methods of numerical modeling of random fields. 
This model is then used for studying the statistical properties of optical radiation 
reflected from the sea surface. 

 

1. DESCRIPTION OF THE SPECTRAL METHODS 

FOR NUMERICAL SIMULATION OF UNIFORM 

RANDOM SPATIOTEMPORAL FIELDS 

 
Let us consider the problem of simulation of a uniform 

Gaussian field w(x, y, t) with zero mean value 
M w(x, y, t) ≡ 0, where the variable t is time. So at a fixed 
t the function w(x, y, t) is a uniform random field, while at 
a fixed point (x, y) the function w(x, y, t) is a stationary 
random process. 

The uniform Gaussian field is uniquely described by its 
correlation function K(x, y, t) = M w(0, 0, 0)w(x, y, t) or by 
the spectral measure F(dλ dν dμ) = f(λ, ν, μ)dλ dν dμ with the 
density f(λ, ν, μ). (The density can be generalized one.) 

 

f(λ, ν, μ) = 
2

(2 π)3 ⌡⌠
R3

 cos(λ x + ν y + μ t) K(x, y, t) dx dy dt 

or 

K(x, y, t) = ⌡⌠
P

 cos(λ x + ν y + μ t) f(λ, ν, μ) dλ dν dμ , 

here P is a half–space in R3, P ∪ (–P) = R3,  
P ∩ (–P) = {0}, in which the spectral measure is defined. 
Symbols λ, ν, and μ denote the Cartesian coordinates in 
the half–space P. We can write the spectral 
representation for an uniform random field3 in the form 
 

w(x, y, t) = ⌡⌠
P

 cos(λ x + ν y + μ t) ξ(dλ dν dμ) – 

– ⌡⌠
P

 sin(λ x + ν y + μ t) η(dλ dν dμ) , 

where ξ and η are the Gaussian orthogonal stochastic 
measures on P, such that the following conditions are 
fulfilled in A, B ⊂ P : 

a.  M ξ(A) = M η(B) = 0 ; 

b.  M ξ2(dλ dν dμ) = M η2(dλ dν dμ) = f(λ, ν, μ) dλ dν dμ ; 

c.  M ξ(A) η(B) = 0 ; 

d.  M ξ(A) ξ(B) = M η(A) η(B) = 0 for A∩B = ∅ . 

Based on the spectral representation of the field, 
approximate models for w(x, y, t) of the form 

wn(x, y, t) = ∑
i=1

n

 ai [ξi cos(λi x + νi y + μi t) + 

 
+ ηi sin(λi x + νi y + μi t)]  

will be reffered to as the spectral ones. Here ai > 0, (ξi, ηi) 

are independent random vectors, equally distributed over 
plane, such that Mξi = Mηi = Mξiηi = 0, Dξi = Dηi = 1. 

Mikhailov4 has proposed the general principle for 
approximate simulation of the uniform Gaussian fields, 
which allows exact reconstruction of the field correlation 
function based on the splitting and randomization of the 
spectrum, when vectors (λi, νi, μi) are randomly selected in 

nonoverlapping regions with the distributions induced by 
the spectral measure F(dλ dν dμ). Randomized spectral 
models of the Gaussian fields are used for solving a wide 
range of problems by statistical simulations. 

The fields wn(x, y, t) are the uniform ones. In the case 

of strong uniformity (when there exists an invariance of 
finite measure distributions relative to shifts), the isotropy 
of vectors (ξi, ηi) on a plane is both the necessary condition 

and the sufficient one. It may happen so that the 
representation  

wn(x, y, t) = ∑
i=1

n

 ai ri cos(λi x + νi y + μi t + ϕi) 

 

is more efficient for making simulations. Here ri = ξ2
i + η2

i 

and ϕi are random variables uniformly distributed over the 

interval [0, 2π] and independent on ri. Let us then assume 

that vectors (ξi, ηi) are Gaussian. Let the spectral space be 

divided into sets of zero intersection P = ∑
i = 1

n

 Λi, Λi ∩ Λj = ∅ 

for i ≠ j. Consider now the following model: a2
i = F(Λi), 

(λi, νi, μi) are random vectors, whose distributions are grouped 

in corresponding regions Λi and induced by the spectral 

measure F. This is a randomized model having correlation 
function, which coincides with the correlation function of the 
field w(x, y, t) under simulation. In Ref. 5 the convergence of 
finite measure distributions under condition that  
max
i ≤ n

 F(Λi) → 0 for n → ∞ has been proved for the given 

model. The problems of weak convergence of spectral models 
of uniform Gaussian fields have been studied in Ref. 6. 
 

2. STATISTICAL MODEL OF THE WIND–DRIVEN 

SEA WAVES 

 
2.1. The experimental data on statistical properties of 

the wind–driven sea waves show that one can describe the 
sea swell surface with a uniform Gaussian random field of 
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heights of the elevations w(x, y, t) above the mean sea level 
to a high degree of accuracy.7 

Let the coordinates x and y be fixed and sea waves be 
considered as a random process  
u(t) = w(x, y, t) . 

In this case the process u(t) is the Gaussian and 
stationary one with the correlation function 

Kt(t) =
 K(0, 0, t) 

and spectral power density 

fμ(μ) = ⌡⌠
R2

 f(λ, ν, μ) dλ dν . 

Let now the variable t be fixed and sea waves be 
considered as a random field v(x, y). In this context the 
field v(x, y) = w(x, y, t) is the uniform Gaussian one with 
the correlation function 

Kxy(x, y) = K(x, y, 0) 

and spectral power density  
 

fλν(λ, ν) = ⌡⌠
R

 f(λ, ν, μ) dμ . 

 

The parameters θ and ρ are quite convenient for use as 
the spectral ones in parallel with the parameters λ and ν 

 

λ = ρ cosθ , ν = ρ sinθ , ρ2 = λ2 + ν2 , θ = arg(λ + i ν) .  
 

Corresponding spectral power densities are interrelated by 
the following expressions:  
 

fλν(λ, ν) = 
1

r(l, n) fρθ(ρ(λ, ν), θ(λ, ν)) ; 

 
fρθ(ρ, θ) = ρ fλν(λ(ρ, θ), ν(ρ, θ)) . 

 
Provided that fρ is the unconditional spectral power density 

on ρ, i.e., 
 

fρθ(ρ, θ) = fρ(ρ) fθ⎮ρ(θ⏐ρ) ; 

 

⌡⌠
0

2π

 fθ⎮ρ(θ⏐ρ) dθ = 1 ; fρ(ρ) = ⌡⌠
0

2π

 fρθ(ρ, θ) dθ , (1) 

 
the spectral power densities fρ and fμ are related by the 

following equations: 
 

fρ(ρ) = 0.5 
g
ρ fμ(μ(ρ)) , μ(ρ) = g ρ ,

fμ(μ) = 
2 μ
g  fρ(ρ(μ)) , ρ(μ) = μ2

 / g ,

 (2) 

 
where g is the acceleration due to gravity. 

Thus, in order to describe the spatial structure of the 
random field of sea waves it is sufficient to set the 
"frequency" spectrum fμ and "angular" spectrum fθ⎮ρ. 

We shall describe the stochastic structure of the sea 
surface considering its temporal variations. In the case of 
monochromatic wave when the spectrum is concentrated at a 
single point (λ, ν, μ) with the weight A 

2, the spectral 
representation of a Gaussian spatiotemporal field has the form 

 
w(x, y, t) = A [ξ cos(λ x + ν y + μ t) – η sin(λ x + ν y + μ t)] , 

where ξ and η are independent standard normal variables, A 
2 

is the field variance. This representation may also be written 
in the form 
 

w(x, y, t) = A r cos(λ x + ν y + μ t + ϕ) = 

=
 
A r cos[ρ (x cosθ + y sinθ) + μ t + ϕ] , 

 

where r
 
= x2 + h2 is the random variable obeying the 

Rayleigh distribution, ϕ = arg(ξ + iη) is the random 
variable uniformly distributed over the interval [0, 2π]. The 
variables r and ϕ are independent. Such a field is a 
sinusoidal wave of length 2π/ρ and amplitude A r, running 
along the direction – sgn(μ)θ. In accordance with the 
spectral model an arbitrary uniform Gaussian field can be 
presented by superposition of such fields 
 

w(x, y, t) = ∑
k

 Ak 
[ξk cos(λk x + νk y + μk t) – 

– ηk sin(λk x + νk y + μk t)] . 

 
As known from hydrodynamic theory μ2 = g ρ tanh(ρH) for a 
monochromatic wave. For the case of a deep water when 
ρH . 1 (H is the reservoir depth), we have μ2 = g ρ. 

2.2. Let us describe, following Ref. 8, a number of 
approximations for the sea waves spectrum. The frequency 
spectrum of a mildly sloping swell closely follows the function 

 
fμ = 6 d

0
(μ

max 
/ μ)5 μ–1 exp[– 1.2(μ

max 
/ μ)5]  

 
in a wide frequency range. Here d

0
 is the variance of the 

field of heights of elevations, and μ
max

 is the frequency of 

the spectrum maximum. (Here and further it is assumed 
that the frequency spectrum is specified on the positive 
semi–axis, i.e. fμ(μ) = 0 for μ < 0). In the case of wind–

driven waves the high–frequency spectrum is more rich. 
One may separate out from the spectrum the gravitational 
(the frequency up to 5 Hz, wavelength longer than 7 cm), 
gravitational–capillary (the frequency from 5 to 50 Hz, 
wavelengths from 7 to 0.7 cm), capillary (the frequency up 
to 104–106 Hz), and viscous ranges. The gravitional–
capillary and the capillary ranges of spectrum are 
approximated with the functions fμ(μ) = aμ–4 and 

fμ(μ) = bμ–7/3, respectively. In its turn the portion near the 

spectrum principal maximum, the transitional, and 
equilibrium intervals are usually separated out from the 
gravitational range.  

The approximation of the gravitational range of the 
frequency spectrum, which takes into the consideration the 
separation of the range into three intervals, has the form 

 

fμ(μ) =

1
0 1 max

1,
max max

1

2 1 1 2
1 2 1

2 1

3 2 5
2 3

( 1) ( )( / )

( 1)
exp ,

( ) ( ) ( , ),
( ) ( ),

( , ),7.8 10 ,

(3)

n

n n

n d

n

n

f f
f

g

−

µ µ

µ

− −

⎧ + μ μ μ μ ×
⎪
⎪
⎪
⎪ μ < μ⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞+ μ μ⎪ ⎪⎪ ⎢ ⎥× − −⎨ ⎬⎜ ⎟ ⎜ ⎟⎪ μ μ⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎪ ⎩ ⎭
⎨

μ − μ μ ∈ μ μ⎪ μ + μ − μ⎪ μ − μ
⎪
⎪

μ ∈ μ μ⎪ ⋅ μ
⎪
⎪
⎩
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there μ
max

, n, μ
1
, μ

2
, d

0
(μ

1
) are the parameters of wind–

driven sea waves (μs ≈ 30 s–1 is the maximum frequency of 

the spectrum of gravitational waves, g = 9.8 m/s2). 
There exists a number of approximations of the 

gravitational range, which do not take into consideration 
the separation into intervals. Typically it is an 
approximation of the form 
 

fμ(μ) = A μ–k exp(B μ–n) . (4) 

 
In this case the variance of the field of elevations d

0
 

and the frequency of maximum of the spectrum μ
max

 are 

obtained from the following expressions: 

d
0
 = A B(n–k)/n 

1
n Γ( )k – 1

n  , 

B = 
k
n μ 

max
n  . 

The expression (4) may be written as  
 

fμ(μ) = n ( )kn
(k–1)/n

 d
0 

μ 
max
k–1 μ–k

 × 

× exp ⎣
⎡

⎦
⎤– 

k
n ⎝
⎛

⎠
⎞μ

max

μ

n

/Γ( )k – 1
n . 

 
Let us present, as an example, the Pearson–Moscowitz 
approximation 

fμ(μ) = 8.1⋅10–3
 g2 μ–5

 exp 
⎣
⎡

⎦
⎤– 0.74 ( )

g
Vμ

4

 , 

where V is the wind velocity (m/s) at an altitude 10 m 
above the sea level. 

The frequency spectrum (4) corresponds to the 
spectrum 

fρ(ρ) = 0.5 g–(k–1)/2 A ρ–(k+1)/2 exp(– B(g ρ)–n/2) . 

As to the angular spectrum fθ⎮ρ, the following its form 

is most frequently used: 

fθ⎮ρ(θ⏐ρ) = 2m 

Γ2( )m + 1
2

Γ(m + 1)
 cosm(θ) , 

 
where m depends on ρ, and θ ∈ [–π/2, π/2]. Below we use 
a simplified approximation  

fθ⎮ρ(θ⏐ρ) = 
2
π cos2θ . (5) 

For numerical simulation we employed the spectra (3) and 
(5) with the following parameters (see Ref. 8):  
 

n = 5; μ
1
 = 1.8 μ

max
 μ~–0.7 ;  μ

2
 = 2.0 μ

max
 μ~–0.7 ;  

μ~ = V μ
max 

/g ;  d
0
 = 0.001 27 g–2V4 μ~–3.19 ; 

 

where μ
max

 is the frequency of maximum of the spectrum fμ, V 

is the wind velocity (m/s) at the altitude 10 m above the sea 
level. In the context of the accepted approach, statistical 
characteristics of the sea waves are determined by the wind 
velocity V and the frequency of spectral maximum μ

max
. 

 
3. ALGORITHM FOR NUMERICAL SIMULATION 

OF THE SEA SWELL SURFACE 

 
To make modeling of the sea swell surface, we 

employed the method of splitting and randomization of 

spectrum.4 The approximate model w*(x, y, t) with the 
spectrum (2), (3), and (5) we used is as follows: 

 

w*(x, y, t) =∑
i=1

M

 ∑
j=1

N

 aij [rij cos(x ρi cosθi y ρi sinθi μi t+ϕij)+rij′  c 

 
Here ρi are random variables with the probability density 

function proportional to fρ in the corresponding sets Ai , 

Ai = [ρ*(i – 1) / (M – 1), ρ*i / (M – 1)] , 

i =
 
1, ... , M – 1 ,  Am = [ρ*, ∞] ; 

θi are random variables distributed over the intervals 

 
Bi = [π(j – 1) / (2 N), π j / (2 N)] 

with the probability density proportional to fθ⎮ρ from Eq. (5); 

rij and rij′  are random variables obeying the Rayleigh 

distribution; ϕij and ϕij'  are uniformly distributed over the 

interval [0, 2π]; μi = ρi g; and, aij
2 = ⌡⌠

Ai

 ⌡⌠
Bj

 fρθ(ρ, θ) dρ dθ . 

Random variables ρi were simulated by the method of 

the inverse distribution function, and θi was simulated by the 

rejection method (with a linear majorant for j > N/2 and a 
constant majorant for j ≤ N/2, where N is even number). The 
results of simulation of the spatiotemporal structure of the sea 
swell surface are shown in Fig. 1. The modeling algorithm 
uses three parameters, M, N, and ρ* which determine the 
accuracy of the approximation. Field w* possesses required 
density and becomes asymptotically Gaussian at 

 
max(M, N) → ∞,  ρ* → ∞ . 
 
These conditions are sufficient for w* to be weakly 
converging in the space of differentiable functions.6  

 
FIG. 1. Examples of the model sea surface relief in a time 
order sequence. 
 

4. APPLICATION OF THE NUMERICAL MODEL TO 

STUDYING THE STATISTICAL PROPERTIES OF 

OPTICAL RADIATION REFLECTED FROM THE SEA 

SURFACE 

 
Let us consider the following modeling problem as an 

example for application of the statistical spatiotemporal 
simulation of the wind–driven sea waves. Let the variations 
of heights of elevations above the mean sea level be 
described by the function z = w(x, y, t) , where w(x, y, t) 
is the uniform Gaussian field with zero mean value and  
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spectrum (1)–(3), and (5) given in Section 2. Let also a light 
beam be propagating from an arbitrary point (x

0
, y

0
, z

0
) above 

the sea surface normally toward the plane XY. Let a detector, 
recording the intensity of radiation reflected from the sea 
surface J(t) be also at this point. The "divergence" of the light 
beam incident on the surface is taken into account by the 
weighting function9 
 
p(x, y) = const exp{– α[(x – x

0
)2 + (y – y

0
)2]} . 

 
It is also assumed that a water surface element reflects 
incident radiation toward the detector if this surface 
element is horizontal accurate to a small value ε 

 

⎝
⎛

⎠
⎞1 + [ ]

∂w
∂x (x, y, t)  

2

 + [ ]
∂w
∂y (x, y, t)  

2 –1/2

 ≤ 1 – ε . (6) 

 
Thus, the intensity of radiation recorded with the detector 
is determined by the following expression:  

J(t) = ⌡⌠
R2

 ϕε(x, y, t) p(x, y) dx dy , (7) 

 
where ϕε(x, y, t) is equal to unity under condition (6) 

otherwise being zero. Note that in our model we do not 
consider the interaction of light with the atmosphere and do 
not take into account the radiation scattered by water medium 
coming to the detector. 

In numerical experiments we used the model of sea 
surface described in Section 3, the integral (7) was 
calculated by approximate methods. From a calculational 
series of the random process J(t) we estimated such its 
statistical characteristics as correlation function and 
spectral power density. 

Figures 2 and 3 present examples of the random 
process J(t) and calculational results (for α = 0.05, 
ε = 0.01) demonstrating qualitatively dependence of the 
statistical properties of J(t) process on wind velocity 
above the sea surface. This results allow the assumption 
to be made that the approach presented in this paper may 
be useful for solving optical problems in active and 
passive sounding of water as well as a number of other 
applied problems, spatiotemporal stochastic structure of 
the sea swell has to be taken into account. 
 

 

 
FIG. 2. Intensity, spectral power density, and correlation 
function of signal reflected from sea swell surface for wind 
velocity of 1 (a) and 6 m/s (b). 

 
 
FIG. 3. Dependence of the variance of spectral power 
density of signal reflected from the sea swell surface on 
wind speed (m/s). 
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