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In this paper we analyze the algorithm for recursive estimation of the 
coordinates of a point isotropically emitting pulsed source from data of remote 
observations from space. We present computational programs which are used for 
calculating source coordinates based on the Kalman and Potter techniques. 
 

In Ref. 1 one finds the formulated problem and the 
proposed differential ranging technique to determine 
coordinates of a point pulsed source of optical radiation 
from data of remote observations from space by a network 
"Navstar" satellite system.2 An algorithm is also proposed 
in Ref. 1 to solve this problem directly, by inverting the 
product matrix GT(Θ

0
) G(Θ

0
) that appears in the linearized 

equation relating the source coordinates to observational 
data 

 

∼
υ = G(Θ

0
) Θ
∼
 + N (1) 

 

after the latter is multiplied on the left by the transposed 
matrix GT(Θ

0
). We assumed the following notations for 

Eq. (1):  

Θ
∼
 = Θ – Θ

0
 ; ∼

υ = t – L(Θ
0
) ; Θ = [x, y, z, T

0
]T ; 

υ = [υ
12

, υ
13

, ..., υ
1n]

T ; x, y, z are the coordinates of the 

source; T
0 
is the systematic error of measured signal delays; 

t
ij are differences between times at which the signal reaches 

different space vehicles (SVs) or delays; Θ
0
 is the nominal 

value of the Θ vector; N is the column-vector of random 
measurement errors with a Gaussian distribution with zero 

average and a variance σ2 ; L(Θ
0
) is the column-vector with 

elements r
j – r

1
 – cT

0
 (j = 2.3, ..., n), calculated for 

nominal values x, y, z, T
0
; rj is the distance from the source 

to the jth SV; c is the speed of light. The matrix G(Θ
0
) has 

the form 
 

G(Θ
0
) = – [G

1
(Θ

0
), G

2
(Θ

0
), ..., Gn–1

(Θ
0
)]T , (2) 

 

where 
 

  ⎭
⎬
⎫

Gj(Θ0
) = [αj+1

, βj+1
,γj+1

,1] ,

αj = (xj – x
0
)/rj0 – (x

1
 – x

0
)/r

10
 ,

βj = (yj – y
0
)/rj0 – (y

1
 – y

0
)/r

10
 ,

γj = (zj – z
0
)/rj0 – (z

1
 – z

0
)/r

10
 ;

 (3) 

 

ri0 (i = 1, 2, ..., n) are the values of ri, calculated for the 

nominal coordinates of the source x, y, z. Following the 

direct technique the vector Θ
∼
 and covariation matrices of 

the estimation errors P are estimated by the following 
formulas: 

 

  ⎭
⎬
⎫Θ

∼
Ð

∼
 = (GT(Θ

0
) G(Θ

0
))–1 GT(Θ

0
) υ ,

P
Ð

(Θ
∼

0
) = (GT(Θ

0
) G(Θ

0
))–1 σ2 .

 (4) 

 

However, the direct technique becomes cumbersome 
when one tries to use expressions (4) for large n. It is more 
convenient to employ one of the recursive techniques, in 
which the estimation is a step–by–step procedure which 
follows the access of data from different SVs, so that the 
new improved estimate is presented as a linear combination 
of the preceding estimate and a new one. Below we consider 
two approaches to the task of recursive estimation of the 
coordinates of a point pulsed source of optical radiation 
from satellite measurement data. Recursive techniques are 
then compared to a direct one. The techniques considered 
are based on the Kalman algorithm and on its modification 
– the algorithm of square root of the matrix of covariation 
of estimation errors, which is also called the Potter 
algorithm.3 

If the vector of data ∼υ is related to the vector of 

parameters Θ
∼
 by equation (1), the Kalman technique3-4 

follows the procedure according to equations 
 

Θ

Ð

∼
 = Θ

–
∼
 + K (∼

υ – G Θ
–
∼
) ;  P

Ð

 = P
–

 – K G P
–

, 
 

where Θ
∼
 and P

–
 are the a priori estimates and the a priori 

matrix of covariation; K and D are defined by the equations 
 

K = P
–

 GT D–1 ,  D = G P
–

 GT + Iσ2 . 
 

Input parameters to the recursive filter are the 

initial values Θ
∼

0
= 0 and P

0
 = (GT (Θ

0
) G(Θ

0
) )–1 σ2

, the 

data zj and the set of coefficients Aj, where zj is the jth 

element of the column-vector ∼υ, i.e. is a scalar, and Aj is 

the jth row of the matrix G(Θ
0
) (the row-vector). 

Computations follow the scheme: 
lj = Pj Aj

T , rj = Aj lj + 1 – covariation of the forecasted 

residual; 
Kj = lj/rj – vector of gain factors; 

∼
υ
j = zj – Aj Θ

∼

j –
 the forecasted residual; 
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Θ
∼

j+1
 = Θ

∼

j + Kj 
∼
υ

j 
– new estimate of vector Θ

∼
; 

P
–

j+1
 = P

–
j – Kj l

T
j – new covariation; 

l
–

j = P
–

j+1
 AT

j , Pj+1
=(P

–
j+1

– l
–

j K
T
j)+Kj K

T
j – the stabilized 

new covariation, where Θ
∼

j and Pj are the estimates of the 

vector Θ and the matrix of covariation of estimates retrieved 
after processing j observations. 
 

Table I. Source coordinates: x = 2879.592; y = 2249.784;  
z = 5218.817. 

 

No.SV  SV coordinates: x
i , yi , zi  

Time of 
signal 

arrival, t
i  

Experiment 1 
Nominal values 

 x
0
=2882.544 y

0
=2252.107 z

0
=5224.175 T

0
 = 0.300

1 15338.253  
 20331.950 

   348.959 0.07502580

2 17241.558   9276.542   
16292.524 

0.06487520

3 9044.992   –
7212.935 

  
22692.147 

0.06940000

4 –12974.502   1986.421   
21828.613 

0.07659680

5 –4876.855  
 11856.692 

  
22009.251 

0.06952020

Experiment 2 
Nominal values 

 x
0
=2882.580 y

0
=2252.156 z

0
=5224.273 T

0 
= 0.300

1 15341.989  
 20331.475 

   162.199 0.07516880

2 17313.940   9369.671   
16161.949 

0.06492040

3 9143.620   –
7080.761 

  
22694.248 

0.06930500

4 –12910.977   1840.856   
21878.980 

0.07657960

5 –5035.433  
 11876.259 

  
21962.940 

0.06962480

Experiment 3 
Nominal values 

 x
0
= 2882.416 y

0
= 2252.00

8 

z
0
= 5223.95

7 

T
0
 = 0.300

1 15347.692 20325.722 –295.8940.07552140
2 17490.615 9593.661 15837.1130.06503740
3 9387.755 –6758.228 22692.9550.06907640
4 –12757.058 1481.394 21996.2930.07654380
5 –5422.602 11926.737 21843.1350.06988440

 

As to the square-root algorithm, the value used for its 
input filter is the a priori value of the square root of P

0
 , 

instead of the a priori value P
0
 of the matrix of covariation P. 

In our case this a square root is equal to S
0
 = G–T (Θ

0
) σ, 

where G(Θ
0
) is calculated by formulas (2) and (3) for n = 5. 

Calculations follow the scheme: 
 

lTj = Aj Sj , rj = 1/(lTj lj + 1) – the inverse value of the 

covariance of the forecasted residual; 
Kj = Sj lj – vector of gain factors; 

~t
j = zj – Aj Θ

∼

j – the forecasted residual; 

Θ
∼

j+1
 = Θ

∼

j + Kj (
∼
υj rj) – new estimate of vector Θ

∼
; 

γ
j = rj / (1 + rj) , Sj+1

 = Sj– (γj Kj )l
T
j – new square 

root of covariation; 
P

j+1
 = Sj+1

 S T
j+1

 – covariation.  

To verify the efficiency of the described algorithms a 
numerical experiment was performed. The initial data and 
the observational data for it are presented in Table I. The 
direct technique was employed for n=5, and the recursive 
techniques were used for n=14. Computational results are 
presented in Table II. 

 

Table II. 
 

 
 

Technique  

Calculated (estimated) parameters 
x, y, z, cT

0
 and diagonal elements of the 

matrix of covariation (in brackets) 
 Experiment 1 

Direct 2881.296 (0.000) 2251.138 (0.001) 
5222.083 (0.007)  –0.166 (0.003) 

Kalman 2880.445 (0.000) 2250.237 (0.001)  
5221.257 (0.007) 0.300 (0.003) 

Potter 2879.842 (0.015) 2249.976 (0.032)  
5220.137 (0.084) 0.598 (0.053)  

 Experiment 2 
Direct 2881.288 (0.000) 2251.155 (0.001)  

5222.106 (0.007) –0.169 (0.003) 
Kalman 2880.336 (0.000) 2250.276 (0.001)  

5221.483 (0.007) 0.300 (0.003) 
Potter 2879.889 (0.016) 2249.897 (0.032)  

5220.439 (0.084) 0.598 (0.052) 
 

Direct 
Experiment 3 

2881.286 (0.000) 2251.137 (0.001)  
5222.056 (0.007) –0.140 (0.003) 

Kalman 2880.427 (0.000) 2250.789 (0.001)  
5221.875 (0.007) 0.300 (0.003) 

Potter 2879.576 (0.016) 2249.693 (0.033)  
5220.846 (0.082) 0.598 (0.052) 

 
Appendicies present the PASCAL computational 

programs for the Kalman and Potter techniques. 
 

 APPENDIX A: KALMAN PROCEDURE 
 

PROCEDURE Kalman ; 
VAR  i , j : INTEGER ; 
 TYPE 
 VECTOR = ARRAY [1 .. 10]  OF REAL ; 
 VAR 
 S, Sigma, Delta 
 : REAL ; 
 V : VECTOR ; 
 BEGIN 
 Sigma : = 1 .; 
 Delta : = z ; { z – input} 
 FOR  i : = 1 TO N DO BEGIN 
 V[i] : = 0. ; 
 FOR j : = 1 TO N DO 
  V[i] : = V[i] + P[i, j]*A[ j] ; {P, A –

 input} 
  Delta : = Delta – A[i]*X[i] ;  {X – input} 

  Sigma : = Sigma + A[i]*V[i] ; 

  END ; 
  Sigma : = 1. /Sigma ; 
  FOR  i : = 1 TO N DO BEGIN 
  K[i] : = V[i]*Sigma ;  {Ê – output} 

  X[i] : = X[i] + K[i]*Delta ; 

{X output estimate} 
   FOR  j : = 1 TO N DO BEGIN 
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    P[i, j] : = P[i, j] – K[i]*V[ j] ; 

    P[ j, i] : = P[i, j] ; 
   END ; 
  END ; 
  FOR  i : = 1 TO N DO BEGIN 
   V[i] : = 0. ; 
    FOR j : = 1 TO N DO 
    V[i] : = V[i] + P[i, j]*A[ j] ;  
 END ; 
 FOR j : = 1 TO N DO 
 FOR  i : = 1 TO j DO BEGIN 
 S:= 0.5*(P[i, j]–V[i]*K[ j] + P[i, j] –

 V[ j]*K[i]) ; 

 P[i, j] : = S + K[i]*K[ j] ; {P – output} 

 P[ j, i] : = P[i, j] ; 
   END ; 
   FOR  i : = 1 TO N DO 
 FOR  j : = 1 TO N DO BEGIN 
     PklOut [i, j] : = Pkl [i, j] ; 
   END ; 
   Xout : = X0 + X[1] ;   {X – output 
coordinate} 
   Yout : = Y0 + X[2] ;  {Y – output coordinate} 
   Zout ; = Z0 + X[3] ;   {Z – output coordinate} 
  END ; 
(
*
 . . . . . . . END of the Kalman procedure . . . . . . .  

*
) 

 

APPENDIX B: POTTER PROCEDURE 
 
PROCEDURE Potter ; 
 TYPE 
  VECTOR = ARRAY[1 .. 10] of REAL; 
 
 VAR 
  Sigma, Delta, Gamma, Alfa   : extended; 
  V  : VECTOR; 
 VAR i , j : INTEGER ; 
 BEGIN 
  Sigma : = 1. ;  
  Delta : = Z ; {z – input} 
 

  FOR i : = 1 TO N DO BEGIN 
   V[i] : = 0.; 
    FOR  j : = 1 TO N DO 
     V[i] : = V[ i] + S[ j, i]*A[ j] ; {S, A – 

input} 
   Delta : = Delta – A[i]*X[i] ; {X – input} 

   Sigma : = Sigma : + V[i]*V[i] ; 

  END ; 
  Sigma : = 1./Sigma ; 
  Delta : = Delta*Sigma ; 

  Gamma : = Sigma/(1. + SQRT(Sigma)) ; 
  Alfa : = 0 ; 
  FOR i : = 1 TO N DO 
   Alfa := Alfa + S[i, j]*V[ j] ; 

  X[i] : = X[i] + Alfa*Delta ;  {X – output} 

  Alfa := Alfa*Gamma ; 

  FOR j ; =1 TO N DO 
  S[i, j] : = S[i, j] – Alfa*V[ j] ; {X –

 output estimate} 
  Xout : = X0 + X[1] ; (X – output coordinate) 
  Yout : = Y0 + X[2] ; (Y – output coordinate) 
  Zout : = Z0 + X[3] ; (Z – output coordinate) 
END ;  {

***
   END of the Potter procedure   

***
} 
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