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Mathematical statement of the problem of evaporation of individual spherical 

high-melting particle in air accounting for recondensation of evaporated matter is 
described in this paper. An algorithm of numerical realization of the problem is 
presented. It was found that a cloud of submicron aerosol of high concentration forms 
in the vicinity of the particle. The results are discussed. 

 
As of the present time, nonlinear effects appearing during 

combustion of carbon particles in the field of high–power 
laser radiation have been studied fairly well.1–4 At intensities 
preceding the optical breakdown the nonlinear effects can also 
be related to evaporation of particle material5,6 with 
subsequent recondensation of the evaporated matter. The 
present paper deals with homogeneous condensation of 
supersaturated vapor in the vicinity of evaporating high–
melting particle. The problem is specified by the presence of 
high temperature gradients that does not allow generalization 
of the results on recondensation obtained for liquid–droplet 
aerosol.7 

 
MATHEMATICAL FORMULATION OF THE 

PROBLEM 
 
Let as consider an individual carbon spherical particle of 

radius R
0
 free–suspended in immovable air. The particle 

matter starts its evaporation heated with laser radiation of 
intensity I

0
 to temperature higher than 3700 K. The analysis 

of characteristic times of the process revealed possible usage of 
quasistationary spherical–symmetric approximation of the 
problem of evaporation of an individual high–melting particle 
with regard to homogeneous recondensation of the evaporated 
matter. 

For components of heterogeneous mixture we write the 
continuity (1)–(3) and heat balance (4) equations 
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The system of equations (1)–(4) is supplemented by 
boundary conditions 
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Here r is the running coordinate (the origin of 
coordinates coincides with the centre of evaporating 
particle); ρ

0
 is the concentration of vapor–gas constituent 

of the heterogeneous mixture (in 1/m3); ρi is the 

concentration of the ith constituent of the heterogeneous 
mixture (i=1 is the carbon vapor C; i = 2 is the air; and, 
i = 3 is the condensed carbon); yi = ρi/ρ

0
 (i = 1, 2) is 

the dimensionless concentration of vapor–gas mixture; 
ci = ρi/ρ is the dimensionless concentration of 

heterogeneous mixture constituents; ρ is the concentration 
of heterogeneous mixture; ρ

3
 is the total number of 

condensed matter atoms per unit volume; m
0
 is the mass 

of carbon atom; v is the velocity of Stefan flow (ν n c
son

, 

c
son

 is the sonic velocity); D is the coefficient of 

interdiffusion; dM/dt is the rate of vapor mass decrease 
per unit volume due to condensation; T is the 
temperature; λ

0
 is the coefficient of thermal conductivity 

of vapor–gas mixture; cp1
 is the carbon heat capacity on a 

single–atom basis; Q = 4 π r 
2ρν is the total flow of 

mixture through a sphere of radius r;  

q(r, y
1
) = 

4 π

m
0
 ⌡⌠
R

0

r

 
 
dM
dt  (r, y

1
) r 

2
 dr is the number of vapor 

atoms condensed per unit time; and, p(r) is the volume 
energy density per unit time due to heat release at phase 
transition and absorption of laser radiation energy by 
condensed aerosol. The particle surface temperature T

s
 is 

unabiguously determined by intensity of incident 
radiation and radius of evaporating particle. A flow of 
number of carbon atoms J

1
 from the particle surface (a 

boundary condition (5)) is determined by kinetics of 
transport in the Knudsen layer. In the limiting case of solid 
medium under condition of low concentration of vapor 
y

2
/y

1
 . 1 the molecule flow J

1
 is determined from the 

expression8 

 

J
1
 = 9.4 πR2 (k

B
 T

s
/2π m

0
)1/2 (ρ

1
 – ρ

sat
) Kn/β2, 

 

where k
B
 is the Boltzmann constant; ρ

sat
 is the 

concentration of saturated carbon vapors; Kn is the 
Knudsen number; β = L/k

B
 T

s
 is the ratio of phase 

transition heat to the mean thermal energy of molecules. 
The decrease of vapor phase is described by vapor 

condensation rate per unit time per unit volume  
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4
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 ρ
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1
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Here ρ
c
 is the carbon density; a is the radius of 

particle growing due to condensation; I
st
 is the stationary 

isothermal rate of nucleation9; and, f is the secondary size 
distribution function. In Ref. 11 the increase of the total 
mass of condensate is determined by formation of new stable 

nuclei of radius a
cr
 and condensation increase at rate 

da
dt of 

nuclei previously formed. The radius of critical nucleus a
cr
 

is calculated by the formula10 
 

d ln I
st

d ln s  = q
*
 + 1, 

 

where q
*
 is the number of molecules in a nucleus of critical 

size, and s = ρ
1
/ρ

sat
 is the degree of supersaturation. This 

formula is valid for clusters of small size for which the 
Kelvin–Gibbs formula can fail. The dynamics of the 
secondary size distribution function is described by the 
kinetic equation 11 
 
∂ f

0

∂ t  + a⋅  
∂ f

0

∂ a  + ν 
∂ f

0

∂ r  = 
I
st

r  δ(a – a
cr
), (12) 

 

where f
0
 = f/ρ, and δ(a – a

cr
) is the Dirac delta function. 

The condition of independence of a growth rate a⋅  on the 
radius in the free–molecular regime is used in Eq. (12). The 
boundary conditions are 
 

⎩
⎨
⎧

 

f
0
(t = 0, r, a) = 0,

f
0
(t, r = R

0
, a) = 0,

f
0
(t, r, a < a

cr
) = 0.

 (13) 

 
It should be noted that Eq. (12) with the boundary 

conditions (13) describes homogeneous condensation of 
secondary particles of radius a ≥ a

cr
 (Ref. 11). Using the 

method of Laplace transform for function f
0
 coupled with 

the principle of freezing a⋅ , ν, ρ, and I
st
 over the variable t 

we obtain the solution in the form 

⎩⎪
⎨
⎪⎧

 

f = 
I
st
(θ) r(r)

a⋅ (θ) ρ(θ)
 , when ⌡⌠

θ

x

 
1

ν(r) dr ≤ t,

f = 0, when ⌡⌠
θ

x

 
1

ν(r) dr > t.

 (14) 

 

Here θ is the coordinate where a stable nucleus of a
cr
 radius  

was formed. The value θ is the root of the equation  

a = a
cr 

+ ⌡⌠
θ

r

 
a⋅ (r)
ν(r) dr. It follows from the solution of kinetic 

equation (12) that the rate of nucleation plays the leading 
role in particle spectrum formation due to its strong 
dependence on thermodynamic parameters of the medium. 
The system of equations (1)–(4), (11), and (12) with 
boundary conditions (5)–(10), and (13) is closed with 
equations of ideal gas for constituents of vapor–gas 

mixture, dynamics of radius of evaporating and growing 
particles, and can be solved using numerical methods. 

 
METHOD OF SOLUTION 

 
By introducing the substitution of variables  

xn = –R
0
/r and dz = λ

0
dT and differentiating Eqs. (1)–

(4) we transform Eqs. (1) and (3) into the form 
 

d2y
1
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⎣
⎢
⎡– 

1
y

1
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1

ρ
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0
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1
 x 
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R2

0
 n2 p(x)
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where η
0
(z) = ⌡⌠

0

z

 
dz

λ
0
(z) . 

The boundary conditions to the equations are  

⎩⎪
⎨
⎪⎧

 

y
1
(x = –1) = y

1s ,

y
1
(x = 0) = 0,

c
3
(x = – 1) = 0,

z(x = –1) = z
s ,

z(x = 0) = 0,

 

(18)

(19)

(20)

(21)

(22)

 

where z
s
 = ⌡⌠

T
0

T
s

 λ
0
(T) dT. 

Equations (14) and (16) are interdependent therefore 
the concentration of vapor y

1s
 on the particle surface can be 

determined only by the iteration method. In this case the 
value y 0

1s
 equal the vapor concentration on the particle 

surface without condensation must be taken as zero 
approximation. The value y 0

1s
 is the root of transcendent 

equation2 
 

– ln(1 – y0
1s
) = (y

sat
(T

s
) – y0

1s
) R

0
 (k

B
 T

s
/2π m

0
)1/2/D

eff 
, 

where D
eff

 = 1 / ⌡⌠
R

0

∞

 
 

T(r)
T

s
 D(T) r 

2 dr.  

The diffusion flow from the evaporating particle surface is 
determined from Eq. (10) with boundary conditions (18) 
and (19) is 

j
d
 = – 4π R2

0
 ρ

0
 D(T

s
) 

d y
1

d r  / r = R
0
. 

 

Representing dy
1
/dr in the form of difference derivative  

 

d y
1

d r  = 
y

1
(R

0
 + 2H) – y

1
(R

0
)

2H  + O(H 2) 
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and using the boundary condition (5) for the evaporated 
matter flow we find the approximation for vapor 
concentration on the surface 
 

y′
1s
 = (D ρ

0
y

1
(R

0
 + 2H)/2H +

 

y
sat

 α
s
)/(ρ

0
ν + α

s
 + ρ

0
D/2H), (23) 

 

where α
s
 = ξρ

0
(k

B
T

s
/2 π m

0
), H = R

0
(1/x

1
 – 1) is the step 

of the difference grid. When dividing an integration 

segment [–1, 0] into 2n portions x
1
 = –1 + 1/2n. The 

iteration approximation y 1
1s
 is used as a boundary condition 

for Eq. (16). Using the obtained solution y
1
(x) based on 

Eq. (23) we construct the next approximation for boundary 
conditions (18) and (19). The iteration process is 

interrupted provided that (y 
i+1
1s

 – y i
1s
)/y i

1s
 ≤ 10–4. 

Equations (15) and (17) have a symbolic form 
 

d2
 U/d x2 +

 
V(x, U) U = g(x) 

 

and are solved by the Multhopp method.12 

 

DISCUSSION ON RESULTS 

 
As the numerical calculations showed, in the vicinity 

of evaporating particle there is a region of high 
supersaturation of vapor where the degree of supersaturation 
attains large values (s ≈ 2–3) (Fig. 1). 

The increase of supersaturation is caused by higher rate 
of carbon vapor atom inflow into the system as compared to 
the rate of vapor atom decrease due to condensation. In this 
region there occurs intense nucleation. The total area of 
secondary surface on which the vapor is condensed increases 
rapidly that results in the increase of vapor decrease rate 
and , as a result, decrease of degree of supersaturation. The 
vapor phase exhausts rapidly (Fig. 2). The base mass of 
vapor is condensed in a ring zone where the degree of 
supersaturation exceeds unity significantly (Fig. 1). Here an 
abrupt change of a portion of supercondenced matter equal 
to f

c 
= ρ

3
/(ρ

3
 + ρ

1
) is observed (Fig. 3). In subsequent 

expansion of heterogeneous mixture the carbon vapor 
pressure slowly tends to the saturated vapor pressure 
(extension of this zone is 2–4 radius of particle). This is 
related to weak increase of secondary mass. After the 
equilibrium state is elapsed, the vapor becomes 
nonsaturated. The obtained specific dependences (Figs. 1, 2, 
and 3) are conditioned by sharp change (depending on 
distance) of saturated vapor pressure which decreases 
exponentially ∼exp (–L/k

B
T(r)) as well as the rate of 

nucleation. 
 

 
 

FIG. 1. The degree of supersaturation s of carbon vapor 
vs. the distance r/R

0
 in the vicinity of particle of radius 

R
0
 = 100 μm under irradiance I

0
 = 2⋅108 W/m2. 

 

 
 

FIG. 2. The dimensionless concentration of carbon vapor 
in the vicinity of evaporating particle vs. the distance: 
1) neglecting condensation of supersaturated carbon 
vapors; 2) taking account of supersaturation; and, 
3) concentration of saturated carbon vapors. Here 
R

0
 = 100 μm and I

0
 = 2⋅108 W/m2. 

 

 
 

FIG. 3. A portion fc of the supercondenced matter vs. the 

dimensionless distance. Here R
0
 = 100 μm and 

I
0
 = 2⋅108 W/m2. 

 

 
 

FIG. 4. The rate of change of the graving particle radius 
vs. the dimensionless distance. R

0
 = 100 μm and 

I
0
 = 2⋅108 W/m2. 

 

The medium temperature in the vicinity of particle 
decreases as ∼1/r. In the region of condensation the change 
of vapor–gas mixture temperature is ΔT ∼ 1000 K which 
corresponds to decrease of saturated vapor pressure by more 
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than an order of magnitude. As a result, the rate of 
secondary growth changes sharply (Fig. 4). The increase of 
the rate of secondary radius change is observed directly near 
the surface of evaporating particle at the distance 
r ~ 1.08 R

0
. This fact is caused by increase of 

supersaturation degree. As the calculation indicated, a 
submicron aerosol is formed as a result of condensation that 
is related to short time of active growth of secondary 
particles: 
 

t ∼ 
d r
ν

 = 
5 ⋅ 10–5 m
10 m/s  = 5⋅10–6 s. 

 
During this time at the rate of increase da/dt ∼ 10–3m/s 
the particle radius attains a ∼ 5⋅10–9m. The radius of stable 
nucleus during this time is ∼ 10–9m. The secondary size 
distribution function has a narrow spectrum since the rate 
of nucleation decreases with distance rapidly. Due to short 
time of active growth of particles the mean radius does not 
change practically with distance, and only a portion of 
modal–radius particles increases. Thus the numerical 
realization of the problem of particle evaporation in 
atmospheric air in a high–power optical field ascertained 
the following peculiarities: 

1. Two– or three–fold vapor supersaturation is 
observed for large particles of R

0
 ∼ 100 μm in the 

prebreakdown regime. 
2. Active nucleation and active growth of concentrated 

particles occur in a narrow ring zone directly near the 
surface of primary particle. 

 

3. A cloud of submicron aerosol forms in the vicinity 
of evaporating particle. 
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