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A method for reconstructing the shape of a pulsed lidar return signal in the case 
the law of error distribution differs from the normal distribution law is proposed. A 
stable algorithm of the reconstruction is presented and its investigation using Monte 
Carlo method is discussed. A theorem is presented that allows, for a particular case of 
estimating the shift parameter, assessment of optimal properties of the algorithm to be 
made. 

 
Information about the shape of reflected lidar pulse is 

important in the case of remote determining the different 
parameters of the atmosphere by means of a pulsed lidar. 
The information about distortion of the regular component 
of the sounding pulse makes it possible to obtain the 
concentration and particle spectrum of atmospheric aerosol, 
volume coefficients of cloud scattering, and some other 
parameters.1 However, known methods for processing of the 
reflected signals based on linear filtration principles can be 
efficient under conditions of explicit or implicit assumptions 
about the form (normal view, in particular) of the laws of 
error distribution. Practically, because of the influence of 
noise of different origin, for example, monitor noise, errors 
of the channels of digital conversion and information 
transfer, and others, these laws differ from the normal 
distribution law. 

Deficit of information as well as the character of the 
statistical criteria for check of distribution laws for 
adequacy and certain probability of the presence of rough 
errors (outliers) does not allow elucidation of the 
formulation of the law of its distribution. Thus, use of 
known methods can result in considerable distorsion of the 
results of the interpretation of the signal shape 
measurement.2–4 There is a problem to develop such 
methods of the measurement processing that would be 
insensitive to the formulation of the distribution law and, in 
particular, poorly responsive to outliers. 

Let us assume that portions of observation are limited 
in duration, and the regular signal compound is limited in 
the first and the second derivatives. In this case, the regular 
signal compound can be considered as polynomial, because, 
according to Wieirstrass theorem, any continuous on the 
closed segment function can be approximated by polynomial 
within any given accuracy. The linear regression on 
polynomial can be chosen as the stochastic mathematical 
model of the problem solution. 

Let polynomial describing the regular signal compound 
be as follows 

 

F( t) = Ñ
0
 + Ñ

1
t + ... +Ñp – 1

 t 
p
 
–

 
1, 

 

where p – 1 is the degree of polynomial (given); Cp – 1
 ≠ 0, 

0 ≤ t ≤ T; T is the signal duration. It is necessary to 
determine unknown coefficients Cj , j = 1, 2, ..., p – 1 from 

the results of bi measurements in the moments of time ti, 

i = 1, 2,..., n. It is seen from Ref. 5 that formulated 
problem reduces to three mathematical models in the form 
of the systems of linear algebraic equations, through the 
solution of which we determine required coefficients. 

1. Stochastic model. In this case the regression 
coefficients are determined as a result of solution of the 
stochastic system of linear algebraic equations (SLAE) of 
the form 

 

A x = b, (1) 
 

where A = (aij) is the n × p matrix, x = (xj) is the 1 × p 

column, and b = (bi) is the 1 × n column. Elements aij and 

bi of the system are the random variables with the unknown 

law of distribution. Further, we assume that n ≥ p and  
 

rang A = p (2) 
 

is almost correct. 
2. Determinate model. This is determinate SLAE of the 

form 
 

–
A –x = 

–
b, (3) 

 

where elements (
–
a ij) and (

–
b ij) are known precisely. This 

most theoretically developed model is not considered here 
because there are no measurements without errors. 

3. Intermediate model. This is stochastic SLAE of the 
form 

 

–
A x = b, (4) 
 

where 
–
A = (

–
a ij), 

–
a ij = 

–
t  

j–1
i , 

–
t i are the moments of 

measurements known precisely, bi = 
–
b i + Δ bi, with the 

unknown law of signal measurement error Δ bi distribution. 

Let 
–
b i + 1

 – 
–
b i = 

–
θ  (i = 1, ..., n – 1). If the number of 

equations is large then it is possible to obtain the system (5) 
using sequential mutual subtraction. 

 

–
D y = e, (5) 
 
where  
–
D = (d
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Unknown x
1
 can be found after unknown x

2
, ..., xp 

from the additional equation. 
Estimation of the correctness of SLAE solution by 

means of algorithm proposed below was carried out with the 
help of Monte Carlo method, and realized during model 
estimation expression for errors of matrix definition (right–
hand part) of the systems (1) and (or) (4) is of the form 
 

Δ t(Δ b) = γa(b)
 + δa(b)

 ξa(b)
,  (6) 

 

where γi ∈ Φ(0, σ
Φ
), δi ∈ B(ε), ξi ∈ H(0, σ

H
) are normal, 

Bernully, and symmetrical unimodal distributions, 
respectively; 
 

E(Δ ti) = E(Δ bi) = 0;  E(Δ tiΔ bj) = E(Δ ti) E(Δ bj); 

E(Δ tiΔ
 tj) = E(Δ ti) E(Δ tj);  E(Δ biΔ bj) = E(Δ bi) E(Δ bj), 

i ≠ j,  ε ∈ [0; 0.5], 
 

where E is mathematical expectation (mean value). 
Let us consider the next (referred to as separating) 

algorithm of solution of problem (4). 
A1. Form the right–hand part of so called "base" 

system, or b
M

 vector. This is the vector the components of 

which are order statistics b(r), b(r + l), ..., b(s) of b vector. 
Quantities r and s are determined from the equation (6) 

π (r, n – r + 1, n, 
1
2) = 2 I

1/2
( r, n – r + 1) – 1 = 2–n ∑

i = r

n – r

 Ci
n, 

where π (r, s, n, 
1
2) is the confidence coefficient;  

s = n – r + 1; n is the size of b sampling; I
1/2

 is 

incomplete β–function. 
Quantities r and s virtually are nonparametric 

confidence boundaries with α
0
 = 1 – π(⋅) regression level 

for median of independent identically distributed random 
quantities corresponding to sampling values bi, i = 1, ..., n. 

Further we form the matrix of the base system  
–
A

M 
= {–a ij}, 

where i is the row number of initial matrix 
–
A, 

corresponding to k element of bM, j = 1, ..., p; k = r, 

r + 1, ..., s . 
Let us assume that we know precisely the degree of 

approximating polynomial p and number of equations n. 

A2. Estimate the components vector of solution 
∧

xM by 

least–square method (LSM). 
A3. Calculate the estimation of rms deviation of model 

distribution law σ
Φ
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as well as 100(1 – α)–per cent confidence interval for 
predicted value of response b

*
, according to the expression7 
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where ts–r–p is the top 100(α/2)–per cent point of 

distribution of ts–r–p, that is  
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asterisk denotes the raw number of initial matrix 
–
A 

corresponding to the order b
(r – i) or b(s + i) statistics (left–

hand and right–hand parts of the interval are taken 
alternatively; i = 1, 2,..., r – 1 for the left–hand part and 
i = 1, 2,..., n – s for the right–hand part). Further, i value 
changes by one at the fourth step of the algorithm. If σ2

Φ
 

value is a priori known, then we calculate 

∧

Δ b
*1

 =
 
ψ(1 – α/2) σ

Φ
 (υ

*
 + 1)1/2, 

where ψ(1 –α/2) = N– 1(1 –α/2; 0.1). 
A4. Check the element b

(r – i) or b
(s + i) for falling 

within confidence interval found at the third step of the 
algorithm. In the case of positive result, b

(r – i)(b(s + i)) 

element is included to b
M

 vector composition, 
–
A

M
 matrix 

is added with a 
T

*
 row, r and s values are changed for  

r – i and s + i respectively; and change to the second 
step of the algorithm is performed. In the case of negative 
result b

(r – i)(b(s + i)) element is rejected, i increases by 

one, and return to the third step is performed. 
At any result we make checking: i = r – 1 and 

i = n – s. If these conditions hold, then the algorithm 
accomplishes its work. 

The algorithm is considered principally only for 
model (4), because for system (1) it can be reduced to 
sequent application of one and the same algorithm firstly to 
the matrix and then to right–hand part with following 
analysis of LSM solution of the system which is made up of 
a set of superpositions. 

In Ref. 5 the version of the problem of estimation of 
shift parameter (model (5)) has been studied extensively, 
and the following theorem has been proved. 

Theorem. Let ratio (5) hold, and conditions imposed 
on the errors of definition of the right–hand parts Δei of the 

system (5) are the same as the conditions (6) for the errors 
of definition of the left–hand parts Δbi of the system (4). In 

this case solution of the system (5) by means of the 
separating algorithm when ε ≠ 0, 0 ≤ ε ≤ 1/2 is the most  
B–robust and the most V–robust value, with the following 

relations: γ* = π/2, κ* = 2, ε = 1/2. Moreover, given 
algorithm determines optimal B– and V–robust estimation 
of solutions.  

If ε = 0, then separating algorithm determines the sole 
empirical assessment with minimum variance of other ones. 
Here γ* is the sensitivity to substantial error, κ* is the 
sensitivity to the change of variance, and ε is the threshold 
point.8  

Unknown form of the error distribution law (6) at the 
finite size of sample of variously distributed random values 
make the theoretical study of solution estimation results 
impossible. Thus, we developed specific algorithm of Monte 
Carlo method, which realizes numerical approach to the 
analysis of the investigation results. 

Methods of estimation of accuracy of the signal 
reconstruction and concrete parameters of the simulation 
algorithm are presented in Ref. 5. Let us note that signal 
envelope was approximated by the second–degree 
polynomial (sampling size of 100 observations), parameter 
of irregularity scale was two orders greater than rms 
deviations of the noise, and the number of independent 
realizations, imitating the signal, was chosen to be equal to 
100. The results of estimation of the algorithm accuracy are 
presented in Table I together with accuracy characteristics 
of the linear algorithm of the least–square method and 
well–known robust algorithm of Hewber (RH) obtained for 
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the same model presented for comparison. The numerator of 
presented data is the estimation of the mean deviation of  

the signal shape estimation from the true shape, 
denominator is the rms deviation estimation. 
 

TABLE I. Results of estimation of accuracy of methods under study. 
 

 Model 
Method Stochastic Intermediate 

 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 
LSM 1.0

9.5 
0.02
4.9  

– 0.05
 4.1  

0.3
4.4 

– 0.06
4.3  

0.2
4.4 

0.1
1.0 

2
50 

8
65 

17
87 

13
107 

– 3
 114 

RH   
– 

 
– 

 
– 

 
– 

 
– 

 
– 

0.2
1.03 

– 0.03
 1.1  

– 0.3
 1.6  

0.3
1.8 

RNO*
 

RNO
 

RA** 0.7
9.9 

2.0
11.2 

1.3
11.7 

– 1.8
 13.3 

0.8
12.3 

0.3
13.8 

0.1
1.0 

– 0.05
 1.1  

0.08
1.3  

0.1
1.3 

0.04
1.3  

0.08
1.5  

 

* Result is not obtained. 
** Robust algorithm, suggested by the author. 

 

Analysis of the results of the simulation shows that for 
both (1) and (4) models and "contamination" severity varying 
from 0 to 0.5 the suggested stable algorithm has the most 
favorable characteristics. Slight increase in variance (in 
comparison with optimal one) of the estimation using 
suggested algorithm at ε = 0.5 can be explained by a finite size 
of the processed sample. 

At the present we modify the algorithm invoking 
smoothing splines as the basis functions. 
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