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A feasibility is discussed of reconstructing the scattering phase function from the 
light field formed in a homogeneous medium by isotropic emission from a source with a 
wide directional pattern. The influence of errors in light field brightness measurement 
on the accuracy of the phase function reconstruction is evaluated. Measurement data 
on angular distribution of brightness at a distance of 5 km from a Lambertian source 
are presented. The data are used to reconstruct the scattering phase function for water 
of the Lake Baykal. 

 
One of the key problems in optics is the determination 

of primary optical properties of a medium (those which are 
independent of illumination or observation conditions). 
Among the primary hydrooptical characteristics are the 
absorption coefficient κ, the scattering coefficient σ, the 
extinction coefficient ε = κ + σ, and the scattering phase 
function χ (Ref. 1). Generally, measurements of these 
characteristics involve study of the structure of light fields 
from artificial sources of radiation. The point sources, such 
as isotropic, Lambertian (cosine), and unidirectional ones, 
have gained wide acceptance in optical recearches into 
ocean.2 

The method for absorption coefficient measurements 
using an isotropically emitting light source coupled with the 
meter of half–space illumination has been proposed in 
Ref. 3. References 4 and 5 validate the calculations of κ and 
the single scattering albedo Λ = σ/ε from the spatial and 
angular distribution of brightness of light field formed in 
sea water from a source of isotropic emission. The 
calculation of Λ by the method proposed in Ref. 5 requires 
an additional information on the scattering phase function. 

The standard technique for measuring the phase 
function assumes photometric evaluation of scattered 
radiation at an angle γ with respect to the direction of an 
incident narrow beam.2 The present paper studies the 
feasibility of reconstructing χ(γ) from the angular 
distribution of brightness field created by emission from a 
point source with a wide directional pattern. Similar 
problem with a source of isotropic radiation has been 
discussed in our previous work.6  

Now consider the conditions of light propagation and 
assumptions used in deriving the formulas. To describe the 
spatial structure of the light field from a point isotropic 
source, we introduce the coordinate system shown in Fig. 1. 
The source of monochromatic radiation S is chosen to be 
located at the origin of coordinates. A photodetector D with 
the aperture SD n R0

2 and angle ΩD n 4π is located at a 
distance R0 from the source and oriented along the direction 
dΩ'. The maximum of radiation from the source is in the 
direction to photodetector; the source angular characteristic 
is described by known function: F(ϑ). A photon, emitted by 
the source in the direction dΩ, passes the distance R1, 

undergoes the scattering at an angle γ, and passes an extra 
distance R2 before reaching the photodetector. 

 
 

FIG. 1. The coordinate system. Here S is the source of 
light; D is the photodetector; dΩ is the viewing direction; 
ϑ, γ, and α are the polar angles of emission, scattering, and 
view; ϕ is the azimuth angle. 

 
For a quantitative description we need to define the 

density of photon flux Bp through the surface element dS 

normal to the direction within an elementary solid angle dΩ 
at the moment t, that is 

 
Bp= d Np/(d t d S dΩ), (1) 

 
where Np is the number of photons. 

Bellow, Bp will be called brightness because for the 

monochromatic radiation it is related to the energy 
brightness Be simply as Bp = Be/hν (Ref. 2), where hν is 

the photon energy. 
 



820   Atmos. Oceanic Opt.  /November–December  1994/  Vol. 7,  Nos. 11–12 B.A. Tarashchanskii et al. 
 

 

It can be readily shown that the angular distribution 
of brightness of scattered radiation in the single scattering 
approximation is 

 

Bp1
(R0, α) = (I0/4π R2

0)(σ R0) (1/sin α) × 

× ⌡⌠
0

π–α

 χ(α + ϑ) exp[– εR(α, ϑ)] F(ϑ) d ϑ. (2) 

 

Here I0 is the intensity of emission from the source; 
 

R(α, ϑ) = R1 + R2 = R0(sinα + sin ϑ)/sin(α + ϑ) 
 

is the path traversed by a photon from the source to the 
receiver. This result is independent of the azimuth angle ϕ 
due to the axial symmetry.  

Now we give the expressions for angular characteristics 
for a source of isotropic radiation 

 

F(ϑ) = 1/4π 
 

and the Lambertian one
 
 

F(ϑ) = {cosϑ/π for ϑ ≤ π/2
 0  for ϑ > π/2 .  

 

Equation (2) has a simple physical meaning: for 
single scattering the radiative field in the direction dΩ′ is 
formed by photons scattered at angles α ≤ γ = (α + ϑ) ≤ π 
(0 ≤ ϑ ≤ π – α); the probability of scattering per unit path 
is determined by the value of scattering coefficient for a 
given direction, i.e., σ(γ) = σ χ(γ)/4π; due to attenuation 
by medium particular scattering contributions have 
weights exp[–ε R(α, ϑ)]; the factor (sinα)–1 comes when 
changing from the flux of scattered photons to the 
brightness, i.e., the flux density within a unit solid angle 
dΩ′ = sinα dα dφ. 

The photon flux at the photodetector is1  
⋅
Np= 

d Np

d t  = ⌡⌠
SD

⌡⌠
ΩD

 Bp(R0, α) dΩ′ d S.   (4) 

For angles α such that sinα . Δα (2Δα being the receiver 
aperture angle), we can restrict ourselves by simple evaluation 
of integrals (4) assuming the integrand as a constant over 
narrow intervals: ΩD/4π n 1 and SD/R0

2 n 1. Let the factors 

independent of the angular coordinate α be introduced into the 

factor 
⋅
N0 = I0(σ R0) (ΩD/4π)(SD/R0

2). Then, taking into 

account Eqs. (2) and (4), we obtain  
⋅
Np(α) sinα = 

⋅
N0 ⌡⌠

0

π–α

χ(α + ϑ) exp[–ε R(α, ϑ)] F(ϑ) dϑ.   (5) 

From
 
this formula it is seen that the scattering phase 

function χ(γ = α + ϑ) can be found from the experimental data 

on 
⋅
Np(α) by solving relevant integral equation. The constant 

⋅
N0 can hardly be determined directly from the experimental 

data. Fortunately, it does not enter into the final result since 
the phase function satisfies the normalization condition  

⌡⌠
4π

χ(Ω) dΩ = 2π ⌡⌠
0

π
χ(γ) sin(γ) d γ = 1. 

 

To solve Eq. (5), let us use discrete variables: ακ= κ h 

and ϑl= l h (κ, l = 0, …, n – 1; h = π/n) instead of 

continuous ones α and ϑ. Subsequent conversion of integral 
into a finite sum (the method of rectangles) and moving the 
term with ϑl = 0 to the left–hand side yield  

{( ) ( /f hχ α = α −κ κ  

–

( 1)

0

1

( )exp ( , ) ( ) exp( )/ (0),
n

l l l
l

R F R F
− +

=

⎫⎪χ α + ϑ −ε α ϑ ϑ ε⎡ ⎤ ⎬⎣ ⎦
⎪⎭

∑
κ

κ κ (6) 

where f(α) = (
⋅
Np(α)/

⋅
N0) sinα. 

As follows from Eq. (6), at a point ακ the phase 
function can be determined experimentally by measuring 

photon flux 
⋅
Np(α) at α = ακ as well as from values of the 

scattering phase function at points ακ+1, …, αn–1 = π – h ≅ π. 
For the recurrence to start, the value of the scattering 
phase function at the point α = π is to be known. Making 
use of Eq. (5) we can find 

 

χ(π) = – exp(ε R0) lim
α→π–0

(∂f/∂α) / F(0), 

thus completing the solution. 
It should be emphasized that the equation (5) falls into 

the class of ill–posed integral equations, that is, slight 
changes in the function f(α) can have a drastic effect on the 
solution χ(γ). The accuracy of calculations by formula (6) 
increases for smaller h. At the same time, if h is too small, the 

error in 
⋅
N(α) measured becomes too large, so it is necessary to 

select an optimal step. The present method of determining χ(γ) 
is stable. Of course, slight deviations occurring in one value of 
χ(αm) (for κ < m < n) are incapable to affect noticeably the 

value of the scattering phase function at a point ακ since the 
latter, as seen from formula (6), is a sum of many 
contributions of the same order of magnitude. 

We choose the data from Ref. 4 to illustrate the method 
proposed for the scattering phase function reconstruction. In 
this reference one finds angular distributions of brightness 
Be(R, α) at distances 10 ≤ R ≤ 115 m from the source of 

isotropic radiation. The measurements were carried out in the 
North — West of the Black Sea at 100–m depth. Similar 
measurements of the scattering phase function for a number of 
angles γ are described in Ref. 4 for the same sea waters.  

 
FIG. 2. The scattering phase function in relative units (for 
the North —West region of the Black Sea): in situ 
measurements of the scattering phase function4 (1), 
scattering phase function calculated from the angular 
distribution of brightness of radiation field formed by 
isotropic emission in sea water (the brightness measurements 
are borrowed from Ref. 4) (2), and the scattering phase 
function calculated using the same data by the method from 
Ref. 7 (3). 
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Figure 2 shows the measured scattering phase function 
χbs and that calculated by formula (6) χ2(γ) (for R0 = 10 m 

and ε = 0.12 m–1). 
Also shown is the phase function obtained by taking 

the derivative of brightness field from source of isotropic 
radiation with respect to the angle α (Ref. 7)  

 

χ1(γ) = – ⎣
⎡

⎦
⎤∂{Be(R0, α) sinα}

∂α α=γ 
. (7) 

 

Reference 7 uses the common property of scattering 
phase functions in natural waters, i.e., their strong forward 
peaked shape. In this case, photon trajectories differ slightly 
(R(α, ϑ) ≅ R0), and the formula (7) can be derived 

(accurate to a constant factor) directly from Eq. (5). The 
domain of applicability of the method (7) is restricted to 
angles γ < 30° (Ref. 7). However, to compare both 
calculation techniques, we present the results over the 
entire range of χ1(γ). 

The measured and calculated scattering phase functions 
were rescaled to avoid their different normalizations. For 
the calculated scattering phase functions, this was done by 
multiplying them by the coefficients m1,2 given by the 

expression  
 

m1,2= (1/n) ∑
i=1

n

 χbs(γi)/χ1,2 (γi), 

 

where the summation is done over the range 4.5° ≤ γi ≤ 95°. 

As seen from Fig. 2, m1,2χ1,2(γ) and χbs(γ) agree 

quite well. For example, while the scattering phase 
function varies by about four orders of magnitude 
(χbs(4.5°)/χbs(95°) g 6⋅ 103), relative discrepancies 

between calculations and measurements averaged over the 
interval 4.5÷95° 

 

δ1,2 = 
1

m1,2
 (1/n) ∑

i=1

n

 [χbs(γi)/χ1,2 (γi) – m1,2] 
2
 , 

 

do not exceed 30%. 
Since the brightness is measured with a quite large 

error (≅ 20%), while the scattering phase function is 
measured with the error no less than 10% (Ref. 4), such an 
agreement between the experimentally measured scattering 
phase function and that calculated from brightness field can 
be recognized as satisfactory. 

Comparison of the functions χ1(γ), χ2(γ), and χbs(γ) 
reveals that the first method and the second one provide the 
same accuracy of reconstruction for γ ≤ 90° (the extension of 
domain of applicability of formula (7) for χ1 up to 90° is, 
seemingly, due to strong forward elongation of the 
scattering phase function in the Black Sea water. The 
method (χ2), proposed in the present paper, describes the 

behavior of χbs(γ) for angles γ > 90° much better. 

We applied the above approach to study the scattering 
phase functions in the water of the Lake Baykal.  

In situ optical measurements in the Lake Baykal were 
carried out within the frameworks of the study of feasibility 
of deep–water recording of elementary particles.7–9 In 
particular, the angular distribution of brightness at a 
distance of 5 m from Lambertian source was investigated in 
one experiment. The measurements carried out at a 1–km 
depth in the South–Baikal basin, 3.5 km away from the 
coast (in the location of neutrino detector), where water 
was optically homogeneous. 

A description of the device and light source are given 
in Ref. 8 in detail. For brightness measurements, the light 
scattering collector, located in front of the device's window 
and used in measurement of κ, was replaced by the system 
of two plane mirrors, one of which rotatable to provide 
scanning over α with a step of 0.5°. The rotation was 
performed through the ratchet gear with electromagnetic 
drive. The photoreceiver aperture angle was bounded within 
Δα = 0.5° using a collimator. 

The linear dynamic range of the photodetector (PMT–
130 operating in the photon counting mode) and of 
recording electronics is much narrower than the range of 
variations of scattered radiation brightness. So, source 
brightness was increased stepwisely for two α values: 2.5° 
and 9°, for which we calculated rescaling coefficients 
required to obtain a smooth function B(α). 

In the experiment we measured the number Npe(α) of 

single–photoelectron pulses on the PMT anode during time 

τ = 10 s. The photoelectron count rate 
⋅
Npe(α) = Npe(α)/τ is 

proportional to the photon flux through the water in a 
given direction, that is,  

 
⋅
Npe(α) = W η K 

⋅
Np(α),  (8) 

 
where K is the product of the mirrors reflection coefficients 
and the window and light filter transmittances, η is the 
quantum efficiency of a PMT's photocathode at a given 
wavelength, W is the probability of photoelectron 
detection. 

The errors in measuring 
⋅
Npe(α) are caused by the 

temporal instability in the recording channel and radiation 
source, statistical fluctuations of Npe, optical system 

misalignment, and errors in determining rescaling 

coefficients. The relative error in 
⋅
Np(α) measurements due 

to the above–mentioned causes is estimated to be no more 
than 5% for α < 100°, giving the error of χ(γ) reconstruction 
not exceeding 20%. 

 

 
 

FIG. 3. The angular distribution of brightness at a distance 
of 5 m from a Lambertian source of light (the Lake Baykal 

1–km depth): counting rate of photon pulses 
⋅
Npe(α) 

measured with a PMT–130 (1), calculations of 
⋅
N ′pe(α) (2). 
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Measurements of 
⋅
Npe(α) are shown in Fig. 3. For the 

given distribution we used the formula (6) to calculate the 
scattering phase function for water of the Baykal, χBw(γ). 
Then these values were substituted into equation (5) to 

yield the flux of scattered radiation 
⋅
N ′p(α). From Eq. (8) 

we obtain the expected rate of a PMT count rate, 
⋅
N ′pe(α). 

The discrepancy between the calculated 
⋅
N ′pe and 

measured 
⋅
Npe gives an estimate of the error in 

reconstruction of the scattering phase function. As is seen 

from Fig. 3, 
⋅
Npe(α) and 

⋅
N ′pe(α) are close within a wide 

range of angles α <∼ 70°. 

For α > 100°, the total count rate 
⋅
Nt of a PMT 

becomes comparable to the count rate of a PMT dark 

current pulses 
⋅
Ndc, even for maximum of the source 

brightness. As a result, the relative error in determining 
⋅
Npe 

increases sharply, because 
⋅
N ′pe = 

⋅
Nt — 

⋅
Ndc. In experiment 

the values of 
⋅
N ′pe(α) were measured with a required 

accuracy only for α up to 100°. In calculations of the 
scattering phase function, we set f(ακ) = 0 for ακ > 100°. 

This resulted in the discontinuity of the function f(α), 
whose edge anomaly affected the result of a specific 
numerical procedure (6), explaining the existing discrepancy 

between 
⋅
Npe and 

⋅
N ′pe for α ≥ 70°. Actually, the difference 

(
⋅
Npe — 

⋅
N ′pe) is vanishing when moving away from the point 

of discontinuity, what illustrates the solution stability 
mentioned above. 

Table I presents the values of scattering phase function 

of Baykal water calculated from the angular distribution of 

brightness at a 5–m distance from a Lambertian light 

source. The scattering phase function is scaled to unity 

within the interval 2° ≤ γ ≤ 100°. 
 

TABLE I. The scattering phase function of Baykal water. 
In situ measurements on March 26, 1988 (H = 1000 m, 
λ = 497 nm, ε = 0.08 m–1). 
 

 γ, °  χ(γ), sr–1 γ, ° χ(γ), sr–1 γ, ° χ(γ), sr–1

2 1.5⋅102 10 8.9⋅10–1 50 1.6⋅10–2 
3 3.6⋅101 15 1.9⋅10–1 60 9.2⋅10–3 
4 1.2⋅101 20 1.2⋅10–1 70 6.5⋅10–3 
5 7.5⋅100 25 7.6⋅10–2 80 4.7⋅10–3 
6 5.4⋅100 30 5.3⋅10–2 90 3.4⋅10–3 
7 3.6⋅100 35 3.8⋅10–2 100 2.8⋅10–3 
8 2.3⋅100 40 2.8⋅10–2 – – 
9 1.5⋅100 45 2.2⋅10–2 – – 

 

To calculate χ(γ) by Eq. (6), one should know the 
extinction coefficient ε in addition to Np(α). Reference 8 

gives the typical Baykal water extinction coefficient being 
about 0.08 m–1 at 1–km depth. Numerical simulation 
reveals weak sensitivity of the scattering phase function to 
slight variations in ε in the vicinity of this value (changes 
of χ(γ) in Eq. (6) due to small ε variations are eliminated by 

normalizing). So, replacement of ε by any of its estimate e~, 
with their difference of, e.g., 30% causes only 10% change 
in the scattering phase function at γ ≤ 100°. 

The results discussed in the present paper have been 
obtained in the single scattering approximation. Generally, 
equation (2) can be considered as the first term in expansion 
of the brightness into a series over the number of successive 
single scatterers. The first order approximation is valid only 
for small expansion parameter, σ R0 n 1. In the 

experiment, this parameter is estimated to be σR0 ≤ 0.2. 

Then, according to Ref. 7 the correction for multiple 
scattering, calculated by Monte Carlo method, is within 
10% for γ from 0 to 30°. 

The account of the effect of multiple scattering on the 
behavior of χ(γ) at large γ and a more correct estimation of ε 
(from the spatial — angular distribution of brightness of 
scattered radiation) will be the subject of a separate study. 
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