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Analytic solutions to the inverse problem of retrieval of the particle size 
distribution function from measurements of the correlation function of their shadows 
have been found. Such solutions are of interest for the development of the method of 
diagnosing coarsely dispersed media from multiply scattered radiation treated in 
the small–angle approximation. 

 
One of the widespread techniques used for solving 

the equation of radiative transfer (ERT) in the small–
angle (SA) approximation is based on approximating the 
integral term of ERT by the operator of convolution.1,2 It 
is then possible to obtain a simple analytic solution to 
ERT, which is described, among the other optical 
characteristics of a medium, by the Fourier transform of 
the small–angle scattering phase function. In the 
approximation of the Fraunhofer diffraction, this 
transform represents the correlation function of particle 
shadows (CFPS), whose form depends on the disperse 
composition of a medium.3 Using dimensionless 
coordinates, the CFPS of a system of spherical scatterers 
ϕ(ξ) is expressed as4 

 

ϕ(ξ) = ⌡⌠
ξ

1

 G(ξ / η) f(η) d η , (1) 

 
where ξ ∈ [0, 1], the function f(η) has the meaning of the 
normalized distribution function of particles over their 
relative size η = r/R (R is the maximum radius of 
scatterers), and the kernel of transformation (1) is 

 

G(t) = 
⎩⎪
⎨
⎪⎧  2

π [arccos t – t 1 – t2], t ≤ 1,

0, t > 1.
 (2) 

 
If data are available on the dependence ϕ(ξ), one 

may set the inverse problem of retrieving the disperse 
composition of a medium from integral equation (1). That 
information is, in its turn, contained in such fundamental 
solutions of the small–angle ERT, as function of 
coherence, intensity of a plane wave, optical transfer 
function, and point spread function, that are controlled 
by the form of CFPS ϕ(ξ) and may be used to retrieve it. 
Such problems were considered in detail in Refs. 4–6. A 
finite difference regularizing algorithm for numerical 
inversion of CFPS ϕ(ξ), described by Eq. (1), was 
reported in Ref. 4. The form of kernel G(t) given by 
Eq. (2) permits various functional transformations of 
Eq. (1) to be applied that lead to well-known types of 
integral equations and make it possible to obtain an 
analytic solution. The present article considers techniques 
for analytic inversion of CFPS ϕ(ξ) given by Eq. (1). 

 

1. DIFFERENTIATION TECHNIQUE 
 
On differentiating Eq. (1) with respect to ξ, we obtain 
 

⌡⌠
ξ

1

 f(η) η–1 1 – (ξ / η)2d η = – 
π
4  

d ϕ(ξ)
d ξ  . (3) 

 
If we consider the zero-order Hankel transform of the 

function ϕ(ξ) 
 

x(ω) = ⌡⌠
0

1

 ξ J0(ω ξ) ϕ(ξ) d ξ , (4) 

 
which defines the scattering phase function, then the 
derivative ϕ'(ξ) entering in the right–hand side of Eq. (3) 
may be represented as the first–order Hankel transform of 
the function ω x(ω) 

 

d ϕ(ξ)
d ξ  = ⌡⌠

0

∞

 ω2 J1(ω ξ) x(ω) d ω . (5) 

 
Let us substitute variables in Eq.(3) 

 
x = η2,  y = ξ2. (6) 
 

Then the integral in Eq. (3) may be represented as a 
cross-correlation 

 

⌡⌠
y

1

 f1(x) x – y d x = ϕ1(y) (7) 

 
of an unknown function 

 
f(x) = x–3/2 f( x) (8) 
 

with the kernel  

g(x) = x U(x),  U(x) = {  1, x ≥ 0,
0, x < 0,  (9) 

 

where 
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ϕ1(y) = – 
π
2 

dϕ(ξ)
dξ  

ξ = y
 . (10) 

 
Accounting for the relation between the correlation 

and the convolution of two functions derived in Ref. 7, we 
may apply the technique of the Fourier transform to solve 
integral equation (7). Efficient numerical techniques are 
available for solving the equations of the convolution type, 
based on taking the discrete Fourier transform.8 

Differentiating Eq. (3) once more, we arrive at the 
Abel–type equation  

 

⌡⌠
ξ

1

 
f(η) d η

η2 η2 – ξ2
 = 

π
4 

d2 ϕ(ξ)
ξ dξ2  . (11) 

 
Its solution may be written in the form 

 

f(η) = – 
η3

2  ⌡⌠
η

1

 
d
dξ ⎣⎡ ⎦⎤

1
ξ 

d2 ϕ(ξ)
dξ2  

d ξ

ξ2 – η2
 . (12) 

 
Many physical problems are reduced to the Abel–type 

equation. Much attention has been paid to the development 
of numerical algorithms and to their solution. A review of 
the existing inversion techniques and algorithms for 
inversion of the Abel equation may be found, e.g., in 
Ref. 9. 

A disadvantage of the above–considered technique is 
the need to differentiate the measured correlation function 
of particle shadows ϕ(ξ), which is always known within the 
limits of error, so the resulting problem is ill–posed and 
calls for regularization. Below we consider those approaches 
that obviate the need for differentiating measurable 
functions. 

 
2. TECHNIQUE OF FOURIER TRANSFORM 
 
If we represent Eq. (7) in the form of a convolution 

f1 × g1 = ϕ1, where g1(x) = g(–x), Eq. (7) acquires the 

following form in the frequency domain: 
 

F1(ω) G1(ω) = Φ1(ω), (13) 

 
where F1(ω) and Φ1(ω) are the Fourier transforms of the 

functions f1(x) and ϕ1(x), G1(ω) = G1(– ω), and  

 
G1(ω) = ( π / 2) (1 / ⏐ω⏐3/2) exp (± i 3π / 4) (14) 

 
is the Fourier transform of the function g(x) = x U(x) 
(see Ref. 7). The minus sign is chosen in case ω > 0, and the 
plus – in case ω < 0. It may be demonstrated that the 
inverse kernel for Eq. (13) is determined by the function 

 
1

G1(w) = – 
4
π (i ω)3 G1(ω),  (15) 

 
and the solution of Eq. (7) in the frequency domain has the 
form 
 

F1(ω) = – 
4
π (i ω)3 G1(ω) Φ1(ω). (16) 

 

We represent the right–hand side of Eq. (16) as a product 
 

F1(ω) = – 
4
π [(i ω) G1(ω)] [(i ω)2 Φ1(ω)] . (17) 

 
A function of the form 

 

g2(x) = – 
U(– x)
2 – x

 (18) 

 
corresponds to the Fourier transform of [(i ω) G1(ω)]. The 

inverse Fourier transform given by Eq. (17) then yields a 
solution of Eq. (7) in the form of a cross–correlation for the 
functions (1/ x) U(x) and ϕ′′(y) 
 

f1(x) = 
2
π ⌡⌠

x

1

 
ϕ′′1(y) d y

y – x
 . (19) 

 
Making the inverse change of variables in Eq. (19) 

η = x, ξ = y, we arrive at a solution which corresponds 
exactly to the solution of Eq. (12) obtained by inversion of 
the Abel equation (11). 

Another form of the solution may be obtained if we 
represent Eq. (16) in the form 

 

F1(ω) = – 
4
π [(i ω)3 G1(ω)] Φ1(ω). (20) 

 
Similarly to the above–considered case, we may 

demonstrate that the solution f1(x), whose Fourier 

transform is determined by relation (20), is a cross–
correlation between the third derivative of the function 

x U(x) and the function ϕ1(y), that is, 

 

f1(x) = 
4
π ⌡⌠

0

1–x

 
d3

dy3 [ y U(y)] ϕ1(y + x) d y. (21) 

 
If we express the function ϕ1(y) given by Eq. (10) in 

terms of the scattering phase function x(ω) using relation 
(5), then we obviate the need for differentiation of ϕ(ξ) 
while retrieving the disperse composition of a medium from 
expression (21). 

 
3. TECHNIQUE OF FUNCTIONAL 

TRANSFORMATIONS 
 
As has already been mentioned above, the disadvantage 

of the solution in the form of formula (12) is the need for 
differentiation of the CFPS ϕ(ξ). One possible way to 
circumvent this difficulty consists in using the Hankel 
transform x(ω) of the function ϕ(ξ) given by Eq. (4). 

Expressing the correlation function ϕ(ξ) and its 
derivatives in terms of the Hankel transform of the 
scattering phase function x(ω) given by Eq. (4) and using 
recursion formulae for the Bessel functions,10 we obtain the 
following integral representation of the differential term in 
expression (12): 

 

Q(ξ) ≡ 
d
dξ ⎣⎡ ⎦⎤

1
ξ 

d2 ϕ(ξ)
 dξ2  = ⌡⌠

0

$

 K(ξ, ω) x(ω) dω, (22) 

 

in which the transformation kernel K(ξ, ω) has the form 
 

K(ξ, ω) = 
ω4

ξ  J1(ξ ω) + 2 
ω2

ξ2 J0(ξ ω) – 3 
ω2

ξ3 J1(ξ ω).   (23) 
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As a result, we obtain our solution in the form 
 

f(η) = – 
η3

2  ⌡⌠
η

1

 
Q(ξ) dξ

ξ2 – η2
 . (24) 

 
Thus the procedure of constructing the solution of 

Eq. (11) consists in successive application of the Hankel 
transform given by Eq. (4) to the correlation function ϕ(ξ) 
and of the integral transformations given by Eqs. (22) and 
(24); as a result, we find the particle size distribution 
function f(η) without differentiating ϕ(ξ). A disadvantage 
of this approach is large volume of calculations of the above 
integrals.  

 
4. TRANSFORMATION TO THE EQUATION OF 

CONVOLUTION WITHOUT DIFFERENTIATING THE 
RIGHT–HAND SIDE 

 
The dependence of the kernel of Eq. (1) on the ratio of 

the arguments ξ/η makes it possible to proceed to the 
equation of convolution by changing the variables 

 

η = η0 e
–αx,  ξ = ξ0 e

–αy. (25) 

 
Let us assume, for definiteness, ξ0 = η0 = 1 and choose 

α > 0. The kernel K(ξ, ω) = G{exp[–α (y – x)]} will then 
depend on the difference between the new variables. 
Substituting Eq. (25) into Eq. (1), we obtain the equation 
of convolution 

 

⌡⌠
0

y

 Q(y – x) ν(x) d x = u(y),  0 ≤ y < ∞ , (26) 

 
for the function ν(x) = η f(η), where η = exp(–α x), with 
its kernel Q(x) = α G exp(–α x) and its right–hand side 
u(y) = ϕ (exp(–α y)). Unfortunately, the function Q(x) is 
not absolutely integrable in the interval [0, ∞), so the 
technique of Fourier transform cannot be applied to solve 
Eq. (26).  

Therefore, we modify Eq. (26) by multiplying its left– 
and right–hand sides by ξ = exp(–α y). As a result, we 
obtain another integral equation of convolution type 

 

⌡⌠
0

y

 Q(y – x) exp (– α(y – x) ν1(x) d x = u1(y) (27) 

 
for the function ν1(x) = η2 f(η), where η = exp(–α x), with 

its kernel Q1(x) = Q(x) exp(–α x) and its right–hand side 

u1(y) = u(y) exp(–α y). The integral 

 

⌡⌠
0

 ∞
 Q1(x) d x = ⌡⌠

0

1

 G(t) d t = 
2
3π < ∞ (28) 

 
converges, so we take the Fourier transform to invert 
Eq. (27). 

Similar reasoning may be applied to solve Eq. (3). By 
substituting variables (25), Eq. (3) may be transformed to the 
form 

 

⌡⌠
0

y

 Q2(y – x) ν(x) d x = u2(y),  0 ≤ y < ∞ , (29) 

 
in which the unknown function ν(x) = η f(η) is the same as 
in Eq. (26), the kernel is 

 
Q2(x) = α(1 – exp (– 2α x))1/2 exp (– α x) , (30) 

 
and the right–hand side u2(y) is related to the right–hand 

side of Eq. (26) by the expression 
 

u2(y) = – 
π
4 ξ 

d ϕ(ξ)
d ξ  = 

π
4 

d u(y)
α d y  . (31) 

 
The function Q2(x) is absolutely integrable in the 

interval [0, ∞), and its Fourier transform has the form 
 

S(ω) = 
π

4  
Γ [(α + i ω) / 2α]

Γ [(4α + i ω) / 2α] . (32) 

 
If we introduce designations V(ω) and U(ω) for the 

Fourier transforms of the functions v(x) and u(y), 
respectively, the solution of Eq. (29) in the frequency 
domain will be given by the formula 

 

V(ω) = 
π

α  (i ω) 
Γ [(4α + i ω) / 2α]
Γ [(α + i ω) / 2α]  U(ω). (33) 

 
5. COSINE AND SINE FOURIER TRANSFORMS: THE 

SOLUTION FOR MOMENTS 
 
We start from Eq. (3), which assumes the form 
 

⌡⌠
ξ

1

 
f(η)
η2  η2 – ξ2 d η = – 

π
4 

d ϕ(ξ)
d ξ  . (34) 

 
We multiply both sides of Eq. (34) by cos(ξ�ω) and 

integrate the result over ξ in the limits from 0 to 1. 
Changing the order of integration in the left–hand side of 
Eq. (34) and calculating the internal integral, we then 
obtain the following equation: 

 

⌡⌠
0

1

 
f(η)
ηω  J1(ηω) d η = – 

1
2 ⌡⌠

0

1

 
d ϕ(ξ)

d ξ  cos(ωξ) d ξ. (35) 

 
To avoide differentiating of the correlation function of 

particle shadows ϕ(ξ), we take the integral in the right–
hand side of Eq. (35) by parts. This yields the function 

 

Γ(ω) = 
⎣
⎢
⎡

⎦
⎥
⎤1 – ω ⌡⌠

0

1

 ϕ(ξ) sin(ωξ) d ξ  / 2, (36) 

 
which defines the first–order Hankel transform of the 
function f(η) /η2 

 

⌡⌠
0

1

 
f(η)
η2  J1(ηω) η d η = ω Γ(ω). (37) 
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The inverse transform given by Eq. (37) yields the sought–
for distribution 
 

f(η) = η2 ⌡⌠
0

∞

 Γ(ω) J1(ηω) ω2 d ω. (38) 

 
To invert integral equation (34) by this technique, 

we take the sine Fourier transform of the correlation 
function ϕ(ξ) and then proceed to the function Γ(ω) given 
by Eq. (36). The sought–for distribution f(η) is then 
found in the form of the Hankel transform of the function 
ω Γ(ω), defined by Eq. (38). The technique described 
above needs no calculation of the derivative dϕ(ξ)/dξ. 
Efficient algorithms are available for calculating the sine 
Fourier transform and the Hankel transform. 

Equation (37) permits simple expressions for 
moments of the particle size distribution function f(η) to 
be derived. To this end, we expand the Bessel function 
J1(ηω) in the integrand of expression (37) and the 

function sin (ωξ) in the integrand of Eq. (36) in power 
series. By simple transformations, expression (37) 
acquires the form 

 

∑
κ=1

∞

 
(– 1)κ m f 2κ

22κ κ! (κ + 1)!
 ω2κ = ∑

κ=1

∞

 
(– 1)κ mϕ

2κ–1

(2κ – 1)!  ω2κ, (39) 

 
where 
 

m f2κ = ⌡⌠
0

1

 f(η) η2κ d η,  κ = 1, 2, ... (40) 

 
are the even moments of the particle size distribution 
functions f(η) and 

 

mϕ
2κ–1 = ⌡⌠

0

1

 ϕ(ξ) ξ2κ–1 d ξ,  κ = 1, 2, ... (41) 

 
are the odd moments of the correlation function of particle 
shadows ϕ(ξ). 

Equating the coefficients for identical powers of ω in 
relation (39), we obtain expressions for the even moments 
of the function f(η) 

 
m f2κ = c2κ m

ϕ
2κ–1 ,  κ = 1, 2, ... , (42) 

 
where 
 

c2κ = 
22κ κ! (κ + 1)!

(2κ – 1)!  . (43) 

 
Thus we arrive at the general formulae expressing the 

2κth moments of the sought–for solution f(η) in terms of 
the (2κ–1)th moments of the correlation function of 
shadows ϕ(ξ). 

Formulae for the odd moments of the distribution 
function f(η) may be obtained similarly, starting from the 
sine Fourier transform of the integral equation (34), with 
subsequent expansion of the cosine Fourier transform of 
CFPS ϕ(ξ) in a power series. It results in the following 
relations between the (2κ + 1)th moment of the particle size  

distribution function f(η) and the 2κth moment of the 
correlation function of particle shadows ϕ(ξ): 
 
m f2κ+1 = c2κ+1 m

ϕ
2κ ,  κ = 0, 1, 2, ... , (44) 

 
where 
 

c2κ+1 = 
π
4 

(2κ + 1)! ! (2κ + 3)! !
(2κ)!  . (45) 

 
By combining formulae (42) and (44) we may state 

that an arbitrary moment mf
κ of the sought–for distribution 

f(η) is expressed in terms of the (κ–1)th moment of the 
correlation function of shadows 

 
m fκ  = cκ m

ϕ
κ–1 ,  κ = 1, 2, ... , (46) 

 
where the coefficients cκ are found from formulae (43) 
and (45). 

When solving many applied problems, it may appear 
quite sufficient to have the first moments of the retrieved 
distribution f(η). If we restrict our consideration to a 
prescribed model of the distribution function f(η) with 
some unknown parameters, these parameters may be 
related to the moments of the distribution. For example, 
for widespread lognormal distribution model 

 

f(η) = 
1

ησ 2π
 exp 

⎩
⎨⎧

⎭
⎬⎫– 

(lnη – m)2

2σ2  , (47) 

 
its parameters m and σ2 are related to the first two moments 
m1 and m2 of the distribution f(η) by the following 

expressions: 
 

m = ln {m2
1 / m2},  σ

2 = ln [m2 / m2
1] . (48) 

 
CONCLUSION 

 
The diverse analytic solutions obtained for inverting 

the CFPS open venues for developing numerical algorithms 
to retrieve the particle size distribution function. Such 
algorithms would include standard routines for 
experimental data processing (such as numerical 
differentiation, Fourier and Hankel transforms, etc.). 
Their efficiency would depend on the rate of respective 
mathematical transformations, on the accuracy of the 
initial data, on the stability of such algorithms with 
respect to errors in the initial data, etc. This calls for 
further dedicated studies. 
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