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This paper discusses the state and prospects in the theory of radiative transfer in 
a broken cloudiness. It shows that the effects connected with stochastic cloud geometry 
may strongly affect the radiative transfer. This must be accounted for when 
interpreting the albedo paradox and anomalous absorption in the near–IR spectral 
range as well as in radiation modules of GCMs and in algorithms for retrieving an 
albedo and cloud–cover parameters from satellite measurements. 

 
1. INTRODUCTION 

 
Climate anywhere on the Earth is the product of a 

large number of processes with complex feedback 
mechanisms. Among those, of a particular concern are the 
processes describing the interaction between the cloud 
and radiation fields, in the light of the evidences from 
certain numerical studies of strong sensitivity of climate 
to these processes (see, e.g., Refs. 1 and 2). The cloud–
radiation interaction is intensively investigated through 
the World Climate Research Program and its different 
subprograms, such as GEWEX (the Global Energy and 
Water Cycle Experiment) and FIRE (First International 
Satellite Climatology Project Regional Experiment). 

Clouds are a major determinant of the planetary 
albedo, as reflecting an appreciable portion of incoming 
solar radiation backward, into outer space. Through this 
process, they control the heating of the Earth's surface by 
solar radiation and, simultaneously, inhibit its cooling, 
reemitting the thermal radiation backward to the surface. 
Higher and cooler clouds emit much less thermal 
radiation than lower and warmer clouds, so that the 
former may even warm the climatic system.3 

As known, a 1% increase in the mean albedo of the 
atmosphere–underlying surface system (an absolute 
increase of 0.003 in albedo) may cause the surface 
equilibrium temperature decrease of 0.5°C (see, e.g., 
Refs. 4–6). A 10% increase in the albedo (from 0.30 to 
0.33) would produce the global cooling of 5°C, thus 
driving the climate to the Ice Age. Obviously, such large 
errors in the determination of albedo are unpermissible on 
the spatiotemporal scales of climate. 

However, now existing climate models, based on 
general circulation models (GCMs), may produce shifts in 
albedo up to 10% or more for sufficiently large regions, 
once the clouds contain the observed amount of liquid 
water. The point is that GCM radiation moduls use the 
simplest model of clouds as horizontally homogeneous 
plane–parallel layer (plane–parallel model) and disregard 
the extreme horizontal inhomogeneity of cloud optical 
properties, caused by 

– cloud–field stochastic geometry; 
– fluctuations in water content, drop size spectrum, 

and phase composition (liquid water or ice crystals) inside 
individual clouds. 

The term "inhomogeneous clouds" is usually taken in 
the sense that the optical parameters have horizontal 
gradients in at least one direction. This inhomogeneity, 
together with the nonlinear relationship between radiative 
characteristics and optical parameters, is responsible for 
the difference between the mean albedo of cloud field and 

albedo of plane–parallel layer with mean values of 
optical characteristics. To eliminate this shift and obtain 
realistic values of albedo, GCMs are forced to employ 
unrealistically small liquid–water contents.7 

Obviously, to eliminate correctly the shift, it is 
necessary to answer the question: How accurate do the 
plane–parallel cloud models estimate the albedo and 
brightness fields of reflected radiation? These estimates 
are used as a basis for approximations employed in 
existing GCMs and in algorithms of retrieving the cloud 
parameters from satellite data. It should be remembered, 
however, that GCMs and retrieval algorithms deal with 
quite different spatial scales. The retrieval algorithms 
normally assume the brightness to be only a function of 
the cloud properties within each pixel falling within the 
receiver's field of view and not exceeding 1 km in extent. 
In contrast, each time step in a GCM is connected with 
the determination of upward and downward fluxes 
averaged over the regions 100 km as large. 

The above questions pose the following problems, 
fundamentally important for the development of radiative 
transfer theory in inhomogeneous media. 

– Development of optical models of inhomogeneous 
clouds, adequately accounting for the random geometry 
and inhomogeneous internal structure of clouds. 

– Using the equation of transfer and the optical 
models developed, to elaborate the methods for 
calculating the linear functionals of the mean intensity, 
the albedo, in particular. 

Although the distinction is somewhat arbitrary, the 
models of inhomogeneous cloud systems can be divided 
into two groups:  

1) models of stratiform clouds, based on the plane–
parallel layer and characterized by optical parameters 
varying in at least one horizontal direction due to internal 
inhomogeneity and/or irregular boundaries;  

2) models of cumulus, taking into account their 
amount, extent, shapes, and spatial arrangement 
(stochastic geometry) as well as the variations of optical 
properties inside the clouds. The fields of cumulus with 
stochastic geometry and deterministic internal structure 
will be called broken cloudiness. 

The present paper discusses briefly the state and the 
prospects of the theory of radiative transfer in broken 
clouds, which is now under intensive investigation in the 
Institute of Atmospheric Optics of Siberian Branch of the 
Russian Academy of Sciences. The paper reviews existing 
models of broken cloudiness, methods of solution of the 
transfer equation as well as evaluates the effects of 
stochastic cloud geometry on mean radiant fluxes and 
brightness fields. Constructing the models, the spatial 
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variations of size spectrum of cloud particles were not 
considered. 

 
2. STOCHASTIC MODELS OF BROKEN CLOUDS 

 
 
The optical model of cumulus with stochastic geometry 

and deterministic internal structure is specified in the layer Λ: 
0 ≤ z ≤ H as the random scalar fields of the extinction 
coefficient σ(r)k(r), single scattering albedo λ(r)k(r), and 
scattering phase function g(r, ω, ω′)k(r). Here σ(r), λ(r), 
and g(r, ω, ω′) are known nonrandom functions, while k(r) 
is the random indicator field  
 

k(r) = 
⎩
⎨⎧
 1 , r ∈ G

 0 , r ∉ G ,
 (1) 

 
where G is the random set of points in Λ at which the cloud 
matter appears, i.e., k(r) = 1 inside a cloud and k(r) = 0 
outside it. The statistics of the optical parameters of broken 
clouds is determined by the probabilistic properties of the field 
k(r). The aerosol and molecular scattering coefficients are 
much smaller than corresponding cloud parameters and, 
therefore, can be neglected within the layer Λ. 

The construction of a physical model of k(r) is an 
independent and very complicated problem, the solution of 
which must be based on the fundamental equations of cloud 
formation and extensive data of field observations. At present 
this problem is not solved, so researchers are forced to use 
mathematical models of k(r). The models typically assume an 
ensemble of individual clouds with a particular geometric 
shapes that are distributed stochasticly in space. In such a 
model, one of the main questions is the law of spatial 
distribution of the clouds. We will discuss this issue briefly. 

It is known8 that the main processes responsible for 
formation of cumulus are the thermal convection and turbulent 
exchange. For plain areas there is no experimental evidence for 
the existence of relations between spatial inhomogeneities of 
the surface and convective flows, what makes it possible to 
neglect the inhomogeneity. Exceptions must be made for 
mountain regions, coastal regions, etc., where the fields of 
meteorological and physical parameters of the atmosphere and 
surface typically have large horizontal gradients. 

We assume that the mean distance between clouds is 
large, and for this reason the dynamical interaction of 
clouds (heat, moisture, momentum exchange, etc.) can be 
neglected. If the surface and thermodynamic parameters of 
the atmosphere up to the condensation level are horizontally 
homogeneous, then on the average there are no physical 
causes which favor the more intensive processes of cloud 
formation in some regions over others (between the levels of 
condensation and free convection). For this reason, the 
assumption about the statistical independence and 
homogeneity of cumulus distribution can be made within 
the layer. This assumption is justified by results of Ref. 9, 
where based on radar data it is concluded that the spatial 
distribution of dynamically noninteracting clouds is well 
approximated by the Poisson distribution. 

Statistical characteristics of cloud fields, generated by 
Poisson point fluxes, are sufficiently well studied.10–13 For 
such random fields, an approximate formula is obtained for 
splitting the functionals of special form, without which it is 
impossible to deduce the equations for intensity moments (see 
Section 3). Figure 1 shows a cloud field generated by Poisson 
point flux in space. Note, what "wild" structures are obtained 
for such a simple model. Also, it is proposed to use the 
Gaussian fields to construct cumulus models close to the 
Poisson models.14 

 
 

 

 
 

FIG. 1. A cloud field in the area of 25××25 km2 generated by Poisson point flux in space (top view). Individual clouds are 
approximated by paraboloids of revolution; they have exponential size–distribution function. 
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Real cumulus have a very odd and irregular geometry, so 
that the use of simplest geometric bodies (such as truncated 
paraboloids, parallelepipeds, spheres, and so on) may appear 
to be quite a crude approximation and lead to uncertainties 
in calculating the flux and brightness field statistics of 
broken clouds. To evaluate these uncertainties, it is 
necessary to develop more complex models taking into 
account the random geometry of cumulus. We propose to 
construct such models based on the  

Poisson field and a sum of n independent Gaussian fields 
with decreasing variances and correlation radii (PGn 

model).15 Figure 2 presents the clouds simulated by a 
computer using the PGn model. As is seen, highly 

interesting pictures are obtained, sufficiently close to 
actually observed cumulus. Statistical characteristics of the 
indicator field in the PGn model are insufficiently 

investigated; they require further studies. 
  

 
 a  b 
 
FIG. 2. A cloud field generated by the Poisson field and a sum of independent Gaussian fields (PGn model for n = 6) in 

the area of 2××2 km2: top view, the picture brightness is proportional to the cloud optical depth (a) and vertical cross 
sections of individual cumulus (b). 
 

3. METHODS OF SOLUTION 
 

Methods of solution are based on the stochastic 
radiative transfer equation of the form  

ωΔI(r, ω) + σ(r)k(r)I(r, ω) = λ(r)σ(r)k(r) ⌡⌠
2π

 

 g(r, ω, ω′) dω′, (2) 

 

where I(r, ω) is the random specific intensity at the point 
r = (x, y, z) in the direction ω = (a, b, c). Depending on 
whether Eq. (2) is averaged numerically or analytically, the 
existing methods of calculating the statistical characteristics 
of radiation can be divided into two groups. 

1. Numerical simulation of cloud and radiation 
fields. This method is based on numerical simulation of a 
sample cloud field using a computer, exact solution of 
Eq. (2) for each sample, and statistical processing of the 
obtained ensemble of radiation fields. Each sample of the 
cloud field is a three–dimensional scattering medium with a 
very complex irregular geometry. At present, the Monte 
Carlo method is the only technique for solving the radiative 
transfer equation in such media. However, the cost of the 
computation of the radiation's statistics is often prohibitive, 
because numerical solution of Eq. (2) itself is expensive. 
The efficiency of the Monte Carlo method is appreciably 
increased by randomization,16 that is, introduction of 
additional randomness. It is shown that the estimates for 
the linear functionals of the solution of Eq. (2) can be 
obtained by simulating the number m ≥ 1 of trajectories for 

each cloud field. The choice of optimal m needs for special 
consideration. In the Poisson cloud models, the mean fluxes 
and the histograms of angular distributions are computed 
optimally at m = 1 (Ref. 12). It is not necessary to obtain a 
rigorous solution of Eq. (2) for each cloud sample, so 
averages over both the ensemble of cloud field samples and 
trajectories can be computed during a reasonably long time. 
Modeling of the free path can be made much less expensive 
by employing the method of maximum cross section.17  

Obviously, the method of numerical simulation can be 
used in any broken cloud model where samples of a cloud 
field can be constructed numerically on a computer. This is 
one of the main advantages of the method, since it opens a 
wide opportunities for improving the stochastic optical 
models based on field data. Further, the method considered 
is accurate in the sense that the statistical characteristics of 
the radiation are calculated without approximations and 
simplifications. Consequently, the estimates can be obtained 
with a preset accuracy. For this reason this method can be 
used to assess the accuracy and applicability of approximate 
methods based on analytical averaging of Eq. (2) over an 
ensemble of cloud fields. The method is deficient primarily 
in that computations of the mean intensity in a given 
direction or variance and correlation functions of fluxes 
(intensity) require much computer time, even with very 
powerful computers. The statistical simulation algorithms 
for computation of the mean fluxes of visible solar radiation 
were first developed and implemented in the model 
generated by the Poisson point fluxes in space.18 
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2. Method of closed equations. The closed systems of 
equations for the mean specific intensity19 and spatial 
correlation functions of solar radiation20 were derived 
through the spatial averaging of the stochastic transfer 
equation. The system of equations for the mean specific 
intensity is solved in the transport approximation;21 the 
results of calculations of the mean fluxes and angular 
distributions of reflected and transmitted radiation are 
presented in Refs. 22 and 23. These papers first showed the 
possibility, in principle, of deriving the closed equations for 
specific intensity moments from the stochastic transfer 
equation, and this is the principal scientific value of these 
studies. Appreciating the importance of the results obtained 
in Refs. 19–23, it should, however, be noted that the 
equations for the specific intensity moments are obtained in 
the nonconstructive (samples of a cloud field cannot be 
constructed) broken–cloud model by averaging over space 
rather than over an ensemble. In deriving the equations a 
number of assumptions are used, which either have unclear 
physical and probabilistic meanings or limit their 
application. For example, the transfer of spatially bounded 
beams from artificial sources of radiation is excluded from 
consideration. Since the model is nonconstructive, it is 
impossible to relate accurately the model input parameters 
to the statistical characteristics of cloud fields determined 
experimentally. This introduces serious difficulties into 
making comparisons between the theory and experiment and 
interpretation of the calculational results. 

Further step in developing the radiative transfer theory 
in broken clouds was done in Ref. 24, where closed equations 
for the moments of intensity of short–wave optical radiation 
were obtained in the Markov approximation by averaging of 
Eq. (2) over the ensemble of cloud field samples. In a 
particular case of homogeneous boundary–value conditions, 
these equations are equivalent to equations of Refs. 19 and 20. 
Thus, instead of a set of insufficiently clear assumptions used 
in Refs. 19 and 20, the only assumption can be retained about 
factorizing the n–dimensional probability of cloud presence for 
the ordered sequence of points, the assumption that has clear 
probabilistic meaning. 

However, Ref. 24 did not raise the question about how 
to construct the random fields with factorizable  
n–dimensional probability of cloud presence for an ordered 
sequence of points. This issue is of key importance from the 
viewpoint of mathematical validity of equations for the 
intensity moments. In Refs. 25 and 26 it is shown for the 
statistically homogeneous Poisson fields that this 
probability is factorized if the points lie on one straight 
line25 (Poisson point flux in space), or on a broken line, 
coordinates of "node" points of which form monotonic 
sequences (Poisson point flux on straight lines). The above 
said indicates that the equations for intensity moments in 
the Markov approximation are valid in the Poisson models 
of cloud fields. This implies that the accuracy and 
applicability of these equations can be readily verified by 
comparing them with appropriate calculations using a 
method of numerical simulation. This comparison shows a 
good accuracy of equations for the mean intensity.27 It is 
practically impossible to make quantitative comparisons for 
the variance and correlation function of intensity, since 
high–precision numerical simulations are unavailable now; 
we can only say about a qualitative good agreement 
between the results.28 It is important also to note that the 
constructiveness of the Poisson cloud–field models allows 
us to relate the model inputs to field data, thus improving 
substantially our understanding of how solar and thermal 
radiation characteristics respond to the effects caused by the 
stochastic geometry of clouds.  

The equations for intensity moments in the Markov 
approximation are also obtained in Refs. 29 and 30, but 
using different way where in addition the formula for 
correlation splitting is given, and the equations for non–
Markovian statistics are deduced. However, the formula was 
derived there without strict mathematical foundation and, 
moreover, no random fields are yet known for which it 
would be at least approximately valid. The construction of 
such random fields is highly interesting and important 
problem, whose solution requires additional studies. 

For statistically homogeneous cloud fields with 
uniform optical characteristics of clouds, the algorithms are 
developed for the solution of equations for the first and 
second moments of intensity, obtained in the Markov 
approximation by the Monte Carlo method (see, e.g., 
Refs. 12 and 13 and bibliography therein). The comparison 
of computed statistical characteristics of solar radiation with 
available field data shows quite reasonable agreement; 
therefore, these equations can be used, at least as a first 
approximation, for studying the flux statistics and 
brightness fields in broken clouds. 

 
4. THE MEAN FLUXES OF SOLAR RADIATION 
 
The radiation field of broken clouds is formed as a 

result of random effects associated with the random 
geometric structure of a cloud field:  

1) the incident parallel flux of solar radiation can 
penetrate, and the direct and scattered radiation can leave a 
cloud layer through non–horizontal bounding surfaces of an 
individual cloud;  

2) incident radiation can be screened by surrounding 
clouds. The mutual shading and radiative interaction of 
clouds can occur, the latter because a fraction of radiation 
exiting through the cloud sides can be multiply scattered by 
neighboring clouds. 

The effects in the first group are connected with finite 
horizontal cloud size, while those in the second are caused 
by the fact that each cloud is not isolated in the space; it 
belongs to the cloud ensemble. It is obvious that these 
effects are missing completely in the plane–parallel cloud 
models and are partly allowed for in an isolated equivalent 
cloud model. As to the cloud field model in the form of an 
ensemble of clouds regularly located in space, it 
incorporates the effects mentioned above but they are 
nonrandom. Since the radiation field depends nonlinearly on 
the number of clouds and their locations in space, these 
effects are taken into account incorrectly. Only when 
broken clouds are modelled as a statistical ensemble, the 
effects in both groups are accurately taken into account. 
These effects are responsible for quantitative and qualitative 
features of the radiative characteristics of cloud fields with 
a random geometry.  

Let the parallel unit flux of solar radiation be incident 
upon the cloud layer in the direction ωƒ = (aƒ, bƒ, cƒ) 

(cƒ = – cos ξƒ is the solar zenith angle). The optical 

characteristics of the cloud layer correspond to the C1 

cloud31 and wavelength of 0.69 μm. Below, angular 
brackets are used to designate mean characteristics of the 
radiation field. 

Obviously, the effects caused by finite horizontal size 
of clouds will depend on the parameter γ = H/D with the 
cloud thickness H and the mean (effective) cloud size D. 
We have γ < 1 for stratus and γ ∼ 1 for cumulus. For 
calculation of the mean albedo <RSt> of stratus covering 

partially the sky, we use the formula which readily follows 
from the equations for the mean intensity at γ → ∞, namely 
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<RSt> = N⋅Rc + (1 – N) Rs , (3) 
 

where Rc and Rs are the albedos of the plane–parallel cloud 

layer and clear sky, respectively. The values of Rc and Rs are 

normally assumed to be independent of cloud fraction N. 
Analogous formulas can be written for the mean direct <SSt> 

and diffuse <Qs,St> transmitted radiation. Neglecting the 

stochastic geometry of upper cloud boundary and variations of 
water content inside stratus, this formula is quite accurate for 
calculation of the mean fluxes of solar radiation.32 

For simplicity, the impact of atmospheric aerosol and 
reflection from underlying surface will be neglected, i.e., 
Rs = 0. Let us take ξƒ = 0° and cloud fraction N = 0.5, then 

<S> = 0.5[1 + exp(– σH)] ≈ 0.5, <Qs> + <R> ≈ 0.5, where 

<R>, <S>, and <Qs> are the mean albedo and the mean direct 

and diffuse transmitted radiation in cumulus, respectively. In 
plane–parallel cloud layer with the mean optical depth 
<τ> = NσH (the mean medium) S(<τ>) = exp(– NσH). As far 
as the cumulus are optically thick, then, except for very small 
and large cloud fractions N, the inequality <S> > S(<τ>) 
holds. Obviously, the diffuse fluxes will be strongly diverse 
too, since for N = 0.5 cumulus scatter only half the incident 
light, while the mean medium scatters radiation almost 
totally. For this reason, it is reasonable to compare the mean 
albedos of cumulus and equivalent stratus. The equivalence 
here is taken in the sense that the cloud modes differ only in 
the mean horizontal cloud size. 

Figure 3 shows the effective cloud amount 
Ne = <R>/Rc (Refs. 33 and 34). Under the above 

assumptions, formula (3) gives that Ne,St ≡ N for stratus; it 

is independent of cloud micro– and macroparameters and 
solar zenith angle whose value varies with season, time of 
day, and latitude. If the sun is at zenith, then irregardless 
of cloud fraction we have Ne ≡ Ne,St or <R> < <RSt> 
(Fig. 3, curve 1). This inequality is explained as follows. It 
is obvious that at ξƒ = 0° the mean fraction of scattered 

radiation is the same for stratus and cumulus, i.e., 
<R> + <Qs> = <RSt> + <Qs,St>. In stratus, the radiation 

almost totally exits through the cloud tops and bases, 
whereas in cumulus a considerable portion of radiation can 
exit through the sides of the large number of individual 
clouds. On the average, radiation emerging from the sides 
has undergone fewer scattering events than radiation exiting 
through the cloud tops and bases. Because of a very 
pronounced forward peak of the phase function, the major 
fraction of radiation exiting through cloud sides contributes 
to the transmittance, so that <Qs> > <Qs,St> and, hence, 

<R> < <RSt>. At large cloud fractions these inequalities 

become weaker due to the radiative interaction between 
clouds. For a given N with an increase of ξƒ the value of 

1 – <S> remains practically unchanged for stratus. Due to 
illumination of the large number of sides, it increases 
substantially for cumulus. Consequently, 
<R> + <Qs> > <RSt> + <Qs,St> and at zenith angles larger 

than some ƒ value, the reverse inequality <R> > <RSt> is 

fulfilled (Fig. 3, curve 3). For N = 0.5 the mean albedo 

deviation δR = 
(Ne – N)

N  × 100% ranges from – 16 

(ξƒ = 0°) to 30% (ξƒ = 60°). Thus, for cumulus formula (3) 

either overestimates (for sun near zenith) or underestimates 
(for sun near horizon) the mean albedo. It is worth noting 
that the effective amount of cumulus depends on their 
optical properties, e.g., on optical depth. 

 
 

FIG. 3. The dependence of the effective cloud amount on 
cloud fraction for σ = 60 km–1, H = 0.5 km, and 
D = 0.25 km; ξƒ = 0 (1), 30 (2), and 60°(3); Ref. 35 (4) 

and Ref. 36 (5); dashed line refers to stratus. 
 
Schmetz35 has proposed a parametrization of radiative 

transfer in which the mean albedos of cumulus are assumed 
to be equal to the corresponding albedo of some equivalent 
parallelepiped cloud, whose geometric size and optical 
thickness increase with increasing cloud fraction. According 
to this parametrization, Ne depends weakly on ξƒ, and for 

short–wave radiation Ne < N everywhere (Fig. 3, curve 4). 

This contradicts the above results having clear physical 
interpretation, because Schmetz's parametrization neglects 
screening of incident radiation by sides of numerous clouds, 
mutual shading, and multiple scattering of light between 
clouds (radiative interaction).  

The solar radiation transfer in a horizontally 
inhomogeneous cloud field consisting of the given number of 
identical clouds regularly located in space was considered 
by Harshvardhan.36 The problem was solved under the 
assumption that diffuse radiation was incident upon the 
upper boundary of the cloud layer. Because the source is 
isotropic in hemisphere, the results can be compared with 
our calculations for some intermediate solar zenith angle  

ƒ < 90°. At a very large values (ƒ > 60°) more or less 

satisfactory coincidence of the results (see Fig. 3, curves 3 
and 5) is observed. The value of Ne determined by the 

parametrizations of Refs. 35 and 36 is independent of the 
optical properties of clouds, what is physically meaningless.  

The solar radiative fluxes depend on many parameters, 
thus necessitating the investigation into not only the mean 
fluxes but also their partial derivatives. The latters allow 
one to estimate quantitatively the sensitivity of fluxes to 
variations of cloud field parameters and to identify the most 
important cloud characteristics influencing on the radiation 
field. Of particular interest is the partial derivative of the 
mean albedo with respect to cloud fraction, because it is 
used to estimate the sensitivity δ of the radiation budget to 
variations of cloud fraction.37 By definition,  

 
 

δ = – 
S0

4  
∂<R>
∂N  – 

∂<F∞>

∂N  , (4) 

 

where S0 is the solar constant, <R> is the mean system albedo, 

and <F∞> is the mean flux of outgoing thermal radiation, all 

spectrally integrated. The albedo effect dominates when δ < 0, 



110  Atmos. Oceanic Opt. /January-February 2005/ Vol. 8, Nos. 1–2 V.E. Zuev and G.A. Titov 
 
 

 

while greenhouse effect dominates when δ > 0. 
From Eq. (3) it follows for the equivalent stratus that 

 
∂<RSt>

∂N  = Rc – Rs ,  
∂<Qs,St>

∂N  = Qc – Qs , (5) 

 
where Qc and Qs are the transmission, for diffuse radiation, of 

plane–parallel clouds and clear sky, respectively. These 
derivatives are independent of N and D and equal to the 
corresponding fluxes computed for N = 1 (Fig. 4a). The mean 
fluxes in cumulus depend nonlinearly on the cloud fraction 
(Figs. 3 and 4a), so that the variations of N and ξƒ may cause 

these derivatives to vary several fold, 
∂<Qs>

∂N  can alter its sign, 

while 
∂<R>
∂N  can change from a monotonically increasing 

function for ξƒ < ƒ to monotonically decreasing for ξƒ > ƒ, 

ƒ ∼ 30° (Fig. 4b). The flux <Qs> for the entire range of ξƒ and 

the mean albedo for large solar zenith angles ξƒ are most 

sensitive to changes in cloud fraction when N is small, where 
the corresponding derivatives are maximum. At small solar 
zenith angles, the albedo exhibits its maximum variability for 

large N values, but for intermediate N the albedo 
∂<R>
∂N  

depends weakly on ξƒ only.  

The derivatives of the mean fluxes with respect to the 
cloud horizontal size D have their maxima as functions of 
cloud fraction at N ≤ 0.5. The maximum shifts toward smaller 
N as ξƒ increases (Fig. 4c). Therefore, <Qs> and <R> are most 

sensitive to the variations of D when N ∼ 0.2–0.5; 
experimental data38 evidence that these N values are typical 

for fair–weather cumulus. As ξƒ increases from 0 to 30°,
∂<R>
∂D   

alters its sign and for ƒ < 30° the mean albedo becomes 

independent of D; it is equal to the mean albedo of stratus. 
The derivatives with respect to N and D are 

approximately of one and the same order (Figs. 4b and c), 
with the mean albedo being more sensitive to the N variations 
than to the D variations. For small cloud fractions, <Qs> is 
more sensitive to variations of cloud fraction, while for 
intermediate and large cloud fractions it behaves similarly for 
variations of both N and D. Calculations of the derivatives 
∂<Qs>

∂s  and 
∂<R>
∂s  have shown that these are 2 to 3 orders of 

magnitude smaller than the derivatives with respect to N and 
D, i.e., the mean radiation regime of cumulus depends weakly 
on the extinction coefficient. To change the mean fluxes by 
the same amount as variations ΔN ∼ 0.1, the extinction 
coefficient must change by Δσ ∼ 10–100 km–1. Because of so 
small variations of <Qs> and <R> with σ, it is expected that 

taking account of macroscale fluctuations of the extinction 
coefficient inside an individual cloud will not lead to 
substantial changes in radiative properties of the cumulus 
field. 

The calculations of 
∂<R>
∂N  in cumulus differ essentially 

from those in stratus, because in the former case when 

estimating 
∂<R>
∂N  one must specify not only the optical 

characteristics, most important at small N, and solar zenith 
angle, but also the initial value of cloud fraction about 
which the cloud amount will vary. Mean cloud amount and 
its variations depend on geographic location; therefore, to 
estimate correctly the derivative of the mean albedo with 
respect to the cloud amount, it is necessary to take into 
consideration the spatiotemporal variation of the global 
cloud field. 

 

 
 a  b  c 

 

FIG. 4. The influence of solar zenith angle on the mean fluxes (a), their partial derivatives with respect to cloud 
fraction (b), and cloud horizontal size (c) for σ = 60 km–1, H = 0.5 km, and D = 0.25 km; here ξƒ = 0 (1), 30 (2), and 

60°(3); solid lines show transmission and dashed lines correspond to reflection. 
 

Radiation modules of GCMs calculate spectral and 
integral fluxes of upwelling and downwelling solar and long–
wave radiation at different altitudes in the atmosphere. In 
calculation of the mean spectral fluxes in the near–IR spectral 
range it is necessary to consider not only the scattering and 
absorption by atmospheric aerosol and reflection from the 
underlying surface, but also the absorption by atmospheric 
gases, primarily by water vapor, carbon dioxide, and ozone.  

The vertical profiles of upward and downward fluxes 
of short–wave radiation modulated by broken clouds were 
first investigated in Refs. 39–41, where one can find a 
description of the models of meteorological parameters, 
optical properties of aerosol, vertical profiles of H2O, 

CO2, and their transmission functions as well as the 

algorithms of calculations. 
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Figure 5 presents the mean spectral radiative 
characteristics calculated for two values of albedo As of a 

Lambertian surface. The value As = 0 roughly represents the 

albedo of ocean and As = 0.8 is the albedo of snow cover. At 

ξƒ = 0° and As = 0 the aerosol–radiation interaction and 

gaseous absorption have little effect on qualitative result: the 
mean downward flux of diffuse radiation at cloud top is larger 
while the mean upward flux at cloud base is smaller in 
cumulus than in equivalent stratus (Figs. 5a and b, curves 1 
and 3). Radiation leaving the cumulus cloud through sides 
undergoes, on average, fewer scattering events than radiation 
exiting through the cloud top and base. For this reason, the 
diffuse radiation is, on the average, less absorbed in cumulus 
than in equivalent stratus (Fig. 5c, curves 1 and 3). At the 
centers of strong absorption bands of H2O and CO2, the 

incident radiation is absorbed almost totally, so that the mean 
fluxes and the absorption, by a cloud layer, of diffuse 
radiation are both negligible. 

 

 

  a  Wavelength, μm 

 

  b  Wavelength, μm 

 

  c  Wavelength, μm 

FIG. 5. The mean spectral fluxes of downwelling radiation 
at the cloud bottom <Qs> (a) and upwelling radiation at the 

cloud top <R> (b) as well as the mean spectral cloud 
absorption of scattered radiation <P> (c) for ξƒ = 0°, 

σ = 30 km–1, N = 0.5 km, and D = 0.25 km: cumulus (1 and 
2) and stratus (3 and 4); the underlying surface albedo 
As = 0 (1 and 3), As = 0.8 (3 and 4), and the mean direct 
radiation flux at the underlying surface level (5). 

At As = 0.8 the underlying surface reflects the major 

portion of incident flux of total radiation. This radiation, 
having interacted with the under–cloud layer, can be 
treated as a diffuse source illuminating the lower cloud 
boundary and can yield a significant increase in the mean 
fluxes under consideration (Figs. 5a and b, curves 1, 2 and 
3, 4). The diffuse radiation in the presence of a sufficiently 
well reflecting surface is, on the average, more strongly 
absorbed in cumulus (Fig. 5c, curves 2 and 4). This is 
because in cumulus the surface–reflected radiation may 
interact not only with cloud bases, but with numerous 
cumulus sides as well. The fraction of direct radiation 
passing through the cloud gaps is smaller in cumulus, hence, 
the reverse is true for diffuse fraction. Cloud particles 
absorb radiation in each interaction, thus validating the 
inequality <P> > <PSt>. 

The results presented above clearly illustrate the 
importance of the effects of stochastic geometry of cumulus 
to radiative transfer. Due to these effects the mean radiative 
characteristics of cumulus differ (by tens of percent) from 
the corresponding characteristics of equivalent stratus either 
of individual effective cloud or an ensemble of identical 
clouds regularly located in space. The mean albedo of 
stratus with inhomogeneous internal structure6,42,43 and 
with random upper boundary44 is also substantially different 
from the albedo of a plane–parallel layer of a mean optical 
depth. These differences must be accounted for in radiation 
moduli of GCMs which need to be refined through the use 
of more realistic models of cloud–radiation interaction. 

 

5. BRIGHTNESS FIELDS OF BROKEN CLOUDS 
 

Global monitoring of optically active components of 
the atmosphere and underlying surface affords a variety of 
facilities, most powerful of which are the methods and 
means of remote optical sensing45–47 permitting continuous 
observations of the dynamics of meteorological fields, the 
spatiotemporal variations of greenhouse–gas concentration, 
optical properties of aerosol, and micro– and 
macroparameters of clouds and underlying surface. In this 
context, the most promising is the use of the corresponding 
spacecraft–borne complex allowing one to obtain the 
information on optical–meteorological and radiation fields 
over large areas of the Earth over short periods during 
which the atmosphere changes insufficiently. 

The methods of interpreting the data of satellite 
measurements on outgoing radiation are based on the 
solution of the transfer equation establishing the 
relationship between the characteristics of radiation 
recorded by a receiver and the parameters of the 
atmosphere–underlying surface system. Almost all existing 
techniques for retrieving the system parameters from 
outgoing short–wave and long–wave radiation 
measurements use the solution of transfer equation in a 
homogeneous plane–parallel cloud layer. The random 
geometry of broken clouds may have an appreciable effect 
on brightness fields, thus introducing a major uncertainty in 
the solution of inverse problems of remote sensing. 

The statistical characteristics of brightness fields of 
visible solar radiation in broken clouds were considered in 
Refs. 48–52. As an example, Fig. 6 gives the mean intensity 
of reflected radiation as a function of zenith and azimuth 
observation angles θ and ϕ (Ref. 52).  The calculations use the 
model of cumulus field generated by the Poisson point fluxes 
on straight lines. Such a cloud field is statistically 
homogeneous and nonisotropic, and the cloud bases are 
squares, on the average. The latter fact implies that the cloud 
optical characteristics in horizontal plane possess, on the 
average, the mirror symmetry about the straight line passing 
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through an arbitrary point in azimuth direction ϕ = 0, 
± 45, and 90°. Obviously, at ξƒ = 0° the mean intensity 

in cumulus <ICu> will itself possess the same symmetry 

(Fig. 6a). As could be expected, the mean intensity in 
equivalent stratus <ISt> is independent of the azimuth 

angle of observation ϕ (Fig. 6b); slight differences are 
 

caused by computational errors. It is seen that <ISt> is 

maximum at θ ~ 0° and decreases with increasing θ, with 
inverse behavior for cumulus. This means that <ISt> and <ICu> 
qualitatively may behave differently as functions of zenith 
angle. Generally speaking, both cumulus and stratus are non–
Lambertian reflectors. 

 
 

 
 a  b 
FIG. 6. The mean intensity of reflected solar radiation for ξƒ = 0°, N = 0.5 km, σ = 30 km–1, H = 0.5 km, and As = 0; 

cumulus (γ = D/H = 1) (a) and stratus (γ = 0) (b). 
 

Let us discuss briefly the effect of differences between 
the brightness fields of cumulus, equivalent stratus, and 
Lambertian–reflecting clouds on the accuracy of retrieving the 
mean albedo of cumulus cloudiness. Let a nadir–looking 
receiver located on a satellite have the field of view angle 
α < π/2. Obviously, this receiver can measure not the mean 
albedo <R>, but rather the integral <Fmes> of the mean 

intensity <I ↑(∂, ϕ)> of radiation outgoing through the 
atmospheric top over the solid angle of the receiver field of view 
 

<R> = ⌡⌠
0

2π

 dϕ ⌡⌠
0

1

 < > I↑(u, ϕ) u du , 

<Fmes> = ⌡⌠
0

2π

  dϕ ⌡⌠
cos α

1

 < > I↑(u, ϕ) u du, (6) 

 

where u = cos θ. The problem is to establish the unique 
relationship between <Fmes> and <R>, which is solved using 

angular distributions of intensity obtained for equivalent 
stratus or "Lambertian" cloud (see, e.g., Ref. 53). We 
introduce the notation 
 

δ = 
<R> – <Rj>

<R>  × 100% , (7) 
 

where <Rj> is the mean albedo of cumulus field 

reconstructed using the angular distributions of stratus 
(index j = St) or "Lambertian" (index j = Lam) clouds. By 
definition, δ gives the error in determination of the mean 
albedo of cumulus caused by neglecting the effects of 
stochastic cloud–field geometry on radiative transfer; its 
values are given in Fig. 7 (Ref. 49). It is seen that the 
assumption of Lambertian properties of cumulus leads to 
either overestimation or underestimation of the values of the 
mean albedo, while the use of the angular distributions of 
stratus systematically overestimates the mean albedo, with 
values of δ as large as ∼ 10–20%. 

We have considered, so far, the mean fluxes and fields 
of solar–radiation brightness in cloud fields of random 
geometry. No less significant component of the Earth's 
radiation regime than the mean fluxes is the long–wave 
fluxes coming from the atmosphere and underlying surface. 
Knowledge of the brightness fields of long–wave radiation 
is required for solving of many important problems, e.g., for 
correct evaluation of disturbing effect of cloud cover in the 
problem of optical sounding of oceanic surface temperature 
from space. The equations for intensity moments of long–
wave radiation and the methods of solution can be found in 
Refs. 54–57, where also studied are the multiple–scattering 
effects and the differences between the brightness 
temperatures of cumulus and equivalent stratus. It has been 
shown that the multiple scattering is only negligible for  
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optically dense cumulus of optical thickness τ > 15–20 and 
zenith viewing angles θ < 60–70°. With these τ and θ 
values, the error in the determination of brightness 
temperature due to the neglect of scattering effects does not 
exceeds 1 K. The brightness temperature difference 
δT = TSt – TCu between equivalent stratus (TSt) and 

cumulus (TCu) is a function of cloud–field parameters and 

viewing angle and varies from – 5 (near zenith) to 15 K 
(near horizon). Thus, the effects caused by the stochastic 
geometry of cumulus can substantially influence both the 
short–wave and long–wave radiative transfer. This should 
be kept in mind when calculating the long–wave radiative 
fluxes, when estimating the parameter of climate sensitivity 
as well as when interpreting the remote sensing data on 
parameters of the atmosphere and underlying surface in the 
long–wave spectral range. 

 

 
 

FIG. 7. Values of δ for ξƒ = 0°, σ = 30 km–1, and 

D = H = 0.5 km: stratus (1) and "Lambertian" clouds (2 
and 3); the underlying surface albedo As = 0 (1 and 2) and 

As = 0.8 (3). 
 

5. CONCLUSION 
 
The radiative transfer theory in broken clouds has been 

intensively developed during recent years. New models, taking 
into account the stochastic geometry of broken clouds, have 
been created and the existing ones have been improved. 
Further impetus is gained by the methods of solving the 
equations for intensity moments by Monte Carlo method. Our 
understanding of the impact of the stochastic cloud geometry 
on radiative transfer is substantially increased. Numerous 
calculations made using different broken–cloud models show 
the results differing by tens percent from calculations using 
the models of a plane–parallel layer, separate cloud, and 
cloud ensemble with a regular spatial arrangement. These 
disagreements are too pronounced to be ignored in the models 
of weather and climate. The radiation moduli of GCMs need 
to be improved by employing, in place of plane–parallel 
models, more realistic models of interaction between stochastic 
clouds and radiation. 

Despite the achievements, some uncertainties remain in 
modeling the radiative transfer in broken clouds. The 
analysis of satellite images of cloud cover provides a 
valuable information on cloud geometry projected onto some 
plane, nevertheless, giving little information on random 
geometry of stratus tops and bottoms (H/D < 1) and on 
three–dimensional geometry of cumulus (H/D ∼ 1). Air– 
and spaceborne lidars offer good promises for this purpose. 

The statistical characteristics of fluxes and brightness 
fields in statistically homogeneous broken clouds can be 
calculated using both the numerical simulation of cloud and 
radiation fields, and the equations for intensity moments. The 
use of these equations considerably increases the efficiency of 
Monte Carlo algorithms, for example, for computation of the 
statistical characteristics of intensity in a given direction or 
variance and correlation function of solar radiation fluxes. 
These equations can be solved not only by the Monte Carlo 
method, but also using other numerical and approximate 
techniques, that may be of utility in developing the GCM 
radiation codes. Real clouds are not statistically homogeneous 
thus requiring the generalization of equations for intensity 
moments to this case. 

The radiation models of broken clouds will be tested 
and improved as the data of complex radiation experiments 
are available, among whose are the measurements, on agreed 
spatiotemporal scales, of all parameters of the atmosphere–
–underlying surface system governing the radiative transfer, 
integral and spectral fluxes of upwelling and downwelling 
short–wave and long–wave radiation as well as brightness 
fields at different spectral intervals. 
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