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We describe computational algorithms and computer programs which make it 
possible to simulate the propagation of high–power laser beams in the atmosphere as 
well as to assess the efficiency of application of different components of adaptive 
optical systems, namely, Hartmann wave–front sensors and flexible and segmented 
mirrors.  The software developed may be used for the investigation of both the beam 
parameters and images formed through the atmosphere as well as for the design of 
adaptive optical systems. 

 

1. INTRODUCTION 
 

Numerical simulations of propagation of an optical 
wave through the atmosphere have become the basic 
techniques for investigation and design of optical systems 
that use high–power lasers.  The first versions of 
computer programs for simulating thermal blooming 
appeared in early 1970s (Ref. 1).  The subsequent 
versions came to describe the influence of atmospheric 
turbulence on beam formation in laser systems2 and 
images in telescopes.3  As the adaptive technology was 
developed, the computer programs came to involve the 

models of elements of the adaptive optical systems.4 
This paper describes the computational algorithms 

used for creating packages of applied programs intended 
for modeling the adaptive control of laser beams in the 
atmosphere. 

The computer programs we have developed allows us 
– to create the scenario of laser beam propagation 

along the atmospheric path (horizontal, vertical, or 
slant); 

– to assess the amplitude and phase distortions 
appearing in the beam propagating through the 
atmosphere; 

– to determine the degree of efficiency of different 
ways used to minimize the arising distortions by the 
methods of adaptive optics. 

The first part of the paper is devoted to numerical 
simulation of the process of high–power beam 
propagation in a moving randomly inhomogeneous 
absorbing gaseous medium such as clear turbulent 
atmosphere.  The models of altitude profiles of 
accompanying atmospheric parameters are also presented.   

In the second part of the paper, the algorithms are 
described, which simulate the elements of adaptive optical 
systems, including a Hartmann wave–front sensor and 
different variants of wave–front correctors. 

The third part of the paper describes the interface of 
the entire program package which is written in 
FORTRAN and operates in MS DOS and WINDOWS 
environment. 

The created software can be used for investigation of 
the intensity fluctuations and of the optical wave phase in 
the atmosphere, simulation of thermal blooming of high–
power laser beams, and image formation in telescopes as 
well as for investigation of the efficiency and design of 
adaptive optical systems. 

2. LASER BEAM PROPAGATION 
 

Computer simulation of the process of laser beam 
propagation in an inhomogeneous medium is based on the 
numerical solution of the wave equation written in the 
parabolic approximation for the scalar complex amplitude U 
of the beam and the field of the medium refractive index, n: 

2 i k 
MU
Mz  = Δ

⊥
U + k

2
n (T) U,  (1) 

where z is the direction of the beam propagation, k = 2π/λ 
is the wave number (λ is the wavelength).  To obtain a 
particular solution, Eq. (1) is supplemented with the 
boundary conditions for the complex field amplitude in the 
cross section of emitting aperture and by the initial 
conditions for the refractive index field. 

When simulating the dynamic and nonlinear problems 
we need for simultaneous numerical solution of Eq. (1) and 
a material equation describing the change of medium state 
in time.  At present the splitting method together with the 
fast Fourier transform (FFT) algorithm is the most effective 
and reliable method for numerical solution of evolution 
equations. 

In our calculations we use a modified splitting 

method5 and the FFT algorithm using mixed basis.6 

 
3. NONSTATIONARY THERMAL BLOOMING 
 

At thermal blooming the medium refractive index 
varies because of medium heat due to absorption of a laser 
radiation.  As a rule, in these problems the temperature 
dependence of the refractive index is assumed to be linear: 

n = n ′

T
 T(x, y) 

 

Time evolution of the temperature field T(x, y, t) in the 
dynamic turbulent atmosphere is described by the material 
equation 
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where t is time, χ is the coefficient of thermal conductivity, 
Vx and Vy are the transverse components of wind velocity, 

α is the medium absorption coefficient, ρ is the medium 
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density, Cp is the specific heat of the medium, and I is the 
laser radiation intensity. 

The coefficients in Eq. (2) may depend on the 
longitudinal coordinate z (along vertical and slant paths) 
and also vary randomly (for example, space–time 
fluctuations of the wind velocity V).  Moreover, at the 
initial point in time the temperature field T can be a 
random function of coordinates x, y, and z (atmospheric 
turbulence). 

For numerical solution of Eq. (2) we use the following 
difference approximation of the diffusion and convection 
terms: 

χ T
–
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y Ty ,  

where 
 
 

T
x
 = (T(i + 1, j) – T(i, j)) / h; i = 1, n – 1; j = 1, n, 

T–
x = (T(i, j) – T(i – 1, j)) / h; i = 2, n; j = 1, n; 

V
±
 = 1/2 (V ± ⏐V⏐) 

for the difference approximations of a derivative with 
respect to the x–direction and analogous approximations for 
the y–direction. 

Now we can write Eq. (2) in the difference form 
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for i = 2, n – 1; j = 2, n – 1 under the boundary conditions 
Tij = 0. 

Dividing the step in time Δt into two half–steps we 
obtain 
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where the superscript m denotes the number of a temporal 
layer and  
V

Rt
 = χ / h – V–

x,    V
Lf
 = χ / h + V+

x; 

V
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y,    V
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The equations obtained can be written in the canonical 
form: 
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Thus we have obtained two sets of linear equations.  The 
sets of equations can be solved using the following 
procedure (formulas are given for the first set of equations). 
1) Forward run: 

α
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2) Reverse run: 
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Thus, the proposed algorithm makes it possible to simulate 
the evolution of the temperature field taking into account 
two mechanisms, namely, forced convection (at an arbitrary 
direction of wind) and molecular thermal conductivity, that 
is important with the presence of stagnation zones along the 
beam propagation path. 

 
4. SIMULATION OF ATMOSPHERIC TURBULENCE 

 
To take into account the influence of turbulent 

fluctuations of the atmospheric refractive index on the 
propagation of a laser beam, it is necessary to simulate a 
two–dimensional randomly inhomogeneous phase distortions 
of the wave front with the corresponding spectral power 
density 

F
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density of the refractive index; κ
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0
 is the outer 

scale of turbulence.  For an inhomogeneous paths this 
expression takes the form 

F
s
(κ) = 0,489 r

–5/9

0
 Φ(κ), 

where 

Φ(κ) = Φ
n
(κ) / (0,033 C

2

n
), 

and the Fried coherence radius r0 in a general case of a 

slant path is calculated as 
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where α is the zenith angle, h
1
 and h

2
 are the altitudes of 

the upper and the lower boundaries of the atmospheric 
layer. 

Let us consider the complex spectral amplitudes As(κ) 
of a random phase function S(x, y) = S(ρ). The phase S(ρ) 
and its spectral amplitude are related by the two–
dimensional Fourier transforms: 

As(κ) = 1 / (2 π)
2

 ⌡⌠ ⌡⌠ d
2

 ρ S(ρ) exp (i κ ρ); 

S(ρ) = ⌡⌠ ⌡⌠ d
2

 κ A(κ) exp (– i κ ρ), 

and the spectral density Fs(κ) is equal to the average square 
of the spectral amplitude modulus: 

F
s
(κ) = <⏐A

s
(κ)⏐

2

>. 
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Since the required phase function S should be real, its 
Fourier transform must satisfy the condition 

As(– κ) = A*
s
(κ), 

where the asterisk * means the operation of the complex 
conjugation. It should be noted that the one–dimensional 
Fourier transform of this expression gives 

Ax(x, – κy) = A*x (x, κy), 

in the x–direction, where 

Ax(x, κy) = ⌡⌠ d κx As(κx, κy) exp (i κx x). 

Thus, we can calculate the x–Fourier transform only for 
κy ≥ 0 and then obtain the values Ax(x, κ

 
y) for κy < 0 using 

the symmetry property. Note also that 

As(– κ
 
x, 0) = A*s  (κ

 
x, 0). 

At numerical simulation of random phase distortions 
using a computer we approximate the field S(ρ) by means of 
a two–dimensional real data array S(i, j) so that 

S(x, y) = S (I Δx, J Δy) = SIJ. 

We also assume that S(x, y) is a periodic function over 
both variables with the periods nΔx and nΔy.  Thus, we can 
change the Fourier integral for a discrete sum 

S
IJ
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 ∑
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 AKLexp(i(K–1)ΔκxIΔx) exp(i(L –1)ΔκyJΔy), 

where Δκx = 2π/(nΔx), Δκy = 2π/(nΔy). Assuming 
Δx = Δy = h we obtain 

S
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For making calculation with the use of the formula obtained 
we apply the FFT algorithm using a mixed base. 

There are some methods of initialization of the data 
array A.  The real and imaginary parts of the data array are 
usually packed by independent random numbers, distributed 
either uniformly or normally so that the condition  

<⏐A
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⏐
2

> = F
s
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K
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holds, where κK = (K – 1) Δκ and κL = (L – 1) Δκ. 

We use the following expression for initializing the A 
data array: 

A
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where RND is random number uniformly distributed over 
the interval [0, 1]. 

To simulate the dynamic problems dealing with time 
evolution of turbulent distortions, we have used the 
hypothesis of "the frozen turbulence".  The phase screen 
shift in the direction of the wind vector V by the value t V 
is observed, where t is the current time.  Using the 
"repetition" property of program generators of pseudo–
random numbers we generate a set of phase screens 
imitating a randomly inhomogeneous medium at every next 
moment according to the following rule: 
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where Sx = Vx t and Sy = Vy t are the shifts along the x 

and y directions. 
The advantage of this approach is evident since we 

have no need for large data arrays to be stored in the 
computer memory. 

General formula for spatial frequencies in accordance 
with indexing of data arrays in the FFT algorithm is of the 
form: 

κ
K

 = Δκ(K – 1), if K ≤ Nq; otherwise κ
K

 = Δκ(K – 1 – n) 

κ
L
 = Δκ(L – 1), if L ≤ Nq; otherwise κ

L
 = Δκ(L – 1 – n) 

 
Nq = 1 + [n/2], where the brackets mean the integer 
part of a number. 
 

It is easy to modify the method described for solving the 
problems sensitive to the shape of spectral density Fs.  For 

example, in order to take into account the influence of inner 
and outer scales of turbulence we use the parameters Rmax and 
Rmin limiting the shape of spectral density within the range 
of spatial frequencies [2π/Rmax, 2π/Rmin] (Ref. 7). 

 

5. SCENARIOS OF THE NUMERICAL EXPERIMENT 
 

The conditions of laser beam propagation in the 
atmosphere include such characteristics as the laser source 
location, location and motion characteristics of a radiation 
detector.  Figure 1 shows one of the possible scenarios of 
the numerical experiment. 

 

 
 

FIG. 1. Scheme of the experiment simulated numerically 
(construction of an image of a remote object O with the 
use of an adaptive telescope): α is the receiver zenith 
angle, β is the scanning angle, and γ is the wind direction. 
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A number of layers in the atmospheric model is fixed 
and equals 30.  Vertical profiles of the basic thermodynamic 
parameters are given in the form of table values with a 1–
km step up to the altitude of 30 km (if necessary, we use 
spline interpolation).  The midlatitude atmospheric models 
are created for two seasons (winter and summer), three 
wavelengths (λ = 1.06, 3.15, and 10.6 μm) and three 
turbulent conditions (the best, intermediate, and the worst). 

Altitude of the laser source h
0
, the initial beam radius 

a
0
, radiation intensity at the beam axis, I

0
, and intensity 

profile in the cross section determine the source 
characteristics.  Detector altitude, zenith angle of the 
propagation path, azimuth, and scanning speed determine 
the detector characteristics.   

The profile components of the effective wind velocity 
with regard to the detector travel direction and speed are 
calculated by the following formulas: 

Vx(h) = V(h) sinγ – Vt sinβ (h – h
0
)/(ht – h

0
) ; 

Vy(h) = V(h) cosγ – Vt cosβ (h – h
0
)/(ht – h

0
), 

where β is the angle of the detector velocity (in radians);  γ 
is the wind velocity angle (in radians);  Vt is the detector 

movement speed, and V(h) is the wind velocity profile. 
As a scale factor for the intensity of radiation from 

source we use the characteristic power density calculated by 
the formula: 
Pk(h) = ρ(h) Cp Vs(h) T

0
/(αm(h) + αa(h)), 

where  

Vs(h) = (Vx(h)2 + Vy(h)2)1/2. 

Then the vertical profile of the nonlinearity parameter 
normalized to its value at the Earth's surface can be 
determined as R(h) = Pk(0)/Pk(h). 

The Fried coherence radius, used at simulating the 
atmospheric turbulence, is calculated by the vertical profile 

of structural characteristic C
2

n
(h) for three turbulent 

conditions taking into account the wavelength of radiation 
emitted from a source. 

 
6. ATMOSPHERIC MODELS 

 
To consider the vertical variability of atmospheric 

parameters entering into Eqs. (1) and (2), we have used the 
standard atmospheric models allowing for physical and 
geographical conditions and constructed on the basis of the 
long–term statistical measurements of space–time variations 
of meteorological parameters.8–13 

The atmospheric air is assumed to be an ideal gas with 
constant composition and the following equations of state 
P = ρ R T  (3) 

and static equilibrium  

– d P = ρ g d h ,  (4) 
where P is the pressure; ρ is the density; R is the universal gas 
constant; T is the temperature; g is the acceleration due to 
gravity; h is the geometric height. 

 
Profiles of temperature, pressure, and air density 
 
In accordance with the character of temperature 

variations with altitude the atmosphere can be divided into 
the following layers: troposphere, stratosphere, mesosphere, 
and thermosphere.  The altitude profile of temperature 
within each specific layer is approximated by a linear 
function of the geopotential altitude H 

T = T
*
 + β (H – H

*
),  (5) 

where T
*
 and H

*
 are the values of temperature and 

geopotential altitude of the lower boundary of the 
atmospheric layer under study; β = dT/dH is the 
temperature lapse rate with respect to the geopotential 
altitude H: 

H = h r/(r + h), 

where r is the Earth's radius. 
The values of T

*
, H

*
, and β, used in our calculations, 

can be found in Ref. 10. 
Joint solution of Eqs. (3) and (4) taking into account 

Eq. (5) gives the following expressions for the altitude 
profile of pressure: 

P = P
*
[1 + β/T

*
(H – H

*
)]

–g/β R
 at β ≠ 0,

P = P
*
exp[– g/RT

*
(H – H

*
)]  at β = 0.

 (6) 

The vertical profile of air density is calculated using 
the given temperature (5) and pressure (6) profiles by the 
equation of state (3). 

 
Profiles of wind velocity 

 
Owing to a considerable space–time variation of wind 

in the atmosphere the data of routine atmospheric sounding 
should be used when solving the applied problems.  
However, for estimating the efficiency of adaptive optical 
systems, intended for operation in the atmosphere, it is 
sufficient to use the models of wind structure obtained by 
averaging the long–term data from sounding stations such 
as the zonal (latitude) component Vx, the meridian 

component Vy, the modulus of the wind velocity vector Vs, 

and the resulting wind Vr.  The values of these 

characteristics for midlatitude summer and winter 
atmospheric models are taken from Ref. 10 and used when 
constructing the altitude profile of the nonlinearity 
parameter.  In this case we take into account the 
relationships between these characteristics 

 

Vx = V
s
 sin γ; Vy = Vs cos γ; 

Vr = (<Vx>
2

 + <Vy>
2

)
1/2

; γ = arctan (Vx / Vy), 
 

where γ is the angle between the meridian of observation 
point and wind direction. 

To study the influence of fluctuations of the wind 
speed and direction on the instability of operation of 
systems of phase conjugation of a reference wave, the data 
on rms deviations of wind characteristics from Ref. 10 are 
also included into the model of wind structure used. 

 
Profiles of turbulence structure characteristic 

 
According to Kolmogorov–Obukhov hypothesis, in the 

inertial interval l
0
 < r < L

0
 the structure function of the 

refractive index fluctuations obeys the law 

Dn(r) = C
2

n
 r2/3. 

In the free atmosphere the ratio of the outer scale L
0
 to 

the inner scale l
0
 of turbulence can reach several orders of 

magnitude. In numerical simulation the value of the inertial 
interval is limited by the size of the computer calculation grid. 
As a rule, the ratio L

0
/l

0
 in the numerical experiment does 

not exceed 1000. 
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The structure characteristic C
2

n
, governing the intensity 

of turbulent distortions, varies with the altitude as h
–a

 in 
the ground layer (h < 20 m) (a = 4/3 for a free convection, 
a = 2/3 for a neutral stratification, a = 0 for stable 
stratification). 

In the free atmosphere the character of altitude 

dependence of C
2

n
 varies with varying meteorological 

situations that makes it difficult to create any universal 
model. We use a simple empirical model obtained on the 
basis of experimental data (up to 20 km) from Ref. 11:  

– for the best conditions 

log [C
2

n
 min(z) – 5.19 ⋅ 10

–16

 ⋅ 10
–0.86

 z] = – 18.34 + 0.29 z + 

+ 8.84 ⋅ 10–2 z2 + 7.43 ⋅ 10–4 z3; 

– for the worst conditions 

log [C
2

n
 max(z) – 9.5 ⋅ 10

–14

 ⋅ 10
–2.09

 z] = – 14.39 + 0.17 z – 

– 3.48 ⋅ 10
–2

 z2 + 9.59 ⋅ 10
–4

 z3; 

– for intermediate conditions 

[log  C
2

n
 (z)]

av
 = 1 /2 {log [C

2

n
 max(z)] + log [C

2

n
 min(z)]}. 

The values of h are given in kilometers, so C
2

n
 is 

measured in m
–2/3

. 
 

Profiles of molecular and aerosol absorption 
 

As known, molecular absorption of radiation is 
strongly dependent on the radiation frequency.  At present 
 

the most universal and accurate method for calculating the 
absorption characteristics is the line–by–line account for 
contributions to the absorption at the frequency of each 
line.  We have used the data from Ref. 12, obtained in the 
numerical calculations up to 20–km altitudes with a 1–km 
step for the wavelengths λ = 1.06, 1.315, and 10.6 μm. 

Atmospheric aerosol also can make an important 
contribution to the thermal blooming of high–power 
radiation in addition to the absorption by gases of the 
atmospheric air.  To account for this contribution we have 
used the data on altitude profiles of aerosol absorption from 
Ref. 13. 
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