
I.P. Lukin Vol. 8, No. 3 /December 1995/ Atmos. Oceanic Opt. 235 
 

0235-6880/95/03 235-06 $02.00 © 1995 Institute of Atmospheric Optics 
 

POTENTIALITIES OF THE METHODS OF POSTDETECTOR PROCESSING 

OF IMAGES OF INCOHERENTLY ILLUMINATED OBJECTS OBSERVED 

THROUGH A TURBULENT ATMOSPHERE 
 

I.P. Lukin 
 

Institute of Atmospheric Optics, 
Siberian Branch of the Russian Academy of Sciences, Tomsk 

Received August 2, 1994 
 

Optical transfer function (OTF) of the turbulent atmosphere and telescopic 
receiving optical system are considered theoretically using different methods of 
postdetector processing of images of incoherently illuminated objects observed 
through the turbulent atmosphere. When approximating the transmission function of 
a receiving lens by a Gaussian shape simple analytical expressions are obtained for 
OTFs of the turbulent atmosphere and a telescope. The following image processing 
methods are examined: the averaged image recording ("very long" averaging times) 
and short-exposure images ("very short" averaging times), namely, Labeyrie and 
Knox–Thompson methods and the method of triple correlation of the image 
intensity. Potentialities and applicability limits of the methods under different 
conditions of optical radiation propagation through the turbulent atmosphere are 
discussed. The influence of the finiteness of the inner scale of turbulence on the 
OTFs under consideration is also estimated. 

 

Problem on reconstructing images distorted due to 
the effects of atmospheric turbulence has been widely 
studied since 1960s. In recent decade, the technical 
revolution caused by vigorous development of computer 
engineering occurs in the field of image processing. 
Improvement reached in quality of optical and electronic 
components and serious reduction of its cost together with 
a wide use of micro– and mini–computers and 
corresponding peripheral devices allowed analysis and 
processing of an image to be done in real time with a 
computer and optical digital systems. 

Processing of the distorted images is needed 
practically in all ranges of the electromagnetic waves: 
radio (radar and radiometry), optical (classical optics and 
astronomy, infrared thermovision), X–rays (X–ray 
astronomy, roentgenography). On the whole, the 
reconstruction of distored images is a research branch on 
development of methods and facilities to compensate for 
distortions introduced into images by various systems 
during the process of image construction. In particular, a 
possibility exists to introduce a compensating action both 
before (adaptive optics) and after the image recording 
(postdetector image processing). The optical image 
distortions appear not only because of the imperfections 
of the recorders (for example, aberrations of receiving 
optics) but also because of optical inhomogeneity of a 
propagation medium (for example, turbulence of the 
atmosphere). In this case, the aberrations of optical 
systems lead to defocusing and geometrical distortions; 
the atmospheric turbulence deteriorates resolution of the 
obtained images by more than an order in optical 
astronomy. 

As known,1,2 random variations in the dielectric 
constant of air cause fluctuations of the parameters of 
optical waves propagating through the turbulent 
atmosphere. Just these fluctuations cause the fluctuations 
of illumination in the image space of a receiving optical 
system. In majority of cases the combined effect of both 
 

the atmosphere and receiving optical system may be 
considered as a random linear filtration. In this case, it is 
sufficient to use optical transfer function (OTF) when 
describing the "atmosphere – receiving optical system" 
complex.3 The optical transfer function is defined as the 
Fourier transform of the intensity distribution of light 
from a point source in the object space in the image space 
of a receiving optical system. In this paper we present 
some results of a theoretical study of the OTFs of a 
turbulent atmosphere and telescopic receiving optical 
system for different methods of postdetector processing of 
images of incoherently illuminated objects observed 
through the turbulent atmosphere, namely, the averaged 
image recording method and short–exposure image 
processing (the Labeyrie and Knox–Thompson methods 
and the method of triple correlation of image intensity). 

The optical wave field behind a receiving lens in the 
sharp–image plane can be written according to the 
Huygens–Kirchhoff method4 
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dρ′ U(ρ′, t) K(ρ′) exp { }– 
i k
F  ρ ρ′ . (1) 

 

Here U(ρ′, t) is the field of an optical wave incident on 
the input aperture of the receiving system; K(ρ) is the 
transmission function of the optical receiving system; F is 
the focal length of the receiving lens; k = 2π/λ, λ is the 
optical radiation free–space wavelength; ρ′ and ρ are the 
transverse coordinates within the input aperture and in 
the sharp–image plane of the receiving lens, respectively; 
and, t is time. Using Eq. (1), we write the optical wave 
intensity in the telescope focal plane as follows: 
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Because the "instantaneous" value of OTF of the optical 
system is the Fourier transform of random intensity in the 
sharp–image plane of this system, we obtain from Eq. (2)  
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 ⌡
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∞

dρ I
g
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i k
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where M(p, t) is the OTF of the optical system, and p is 
the spatial scale. By substituting Eq. (2) into Eq. (3) and 
integrating the latter over ρ and ρ", we obtain the 
following expression for OTF of the optical system5: 
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 ⌡
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∞

dρ′ U(ρ′, t) U*(ρ′ + p, t) K(ρ′) K*(ρ′ + p). (4) 

 

Since the optical wave field U(ρ, t) is random (because of 
the dielectric fluctuations of the turbulent atmosphere), 
the instantaneous value of OTF M(p, t) (Eq. (4)) is a 
random value rapidly varying with time. If the object 
image is recorded during the time when the atmospheric 
turbulence is "frozen", i.e., during ∼10–3 s, then 
practically each recorded image can be considered as a 
random intensity distribution. 

In the case of recording averaged image ("very long" 
exposure) which corresponds to the averaging times 
longer than the time of "frozen" turbulence (the exposure 
time of ∼ 10...100 s), the OTF of the turbulent 
atmosphere and receiving optical system can be written as 
follows: 
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where τ is the averaging time (the exposure time), and 
Γ

2
(ρ′, ρ′ + p; t, t) = <U(ρ′, t)U*(ρ′ + p, t)> is the second–

order mutual–coherence function of the incident optical wave. 
The incident optical wave is assumed to be plane (for 

example, radiation from a star). Then 
 

U(ρ, t) = U
0
 exp{ψ(ρ, t)} . 

 

Here U
0
 is the amplitude of the incident optical wave; 

ψ(ρ, t) = χ(ρ, t) + iS(ρ, t) describes fluctuations of the optical 
wave complex phase; χ(ρ, t) and S(ρ, t) are the fluctuations of 
the amplitude logarithm and optical wave phase, respectively. 
As known,4 the probability distribution for χ(ρ, t) and S(ρ, t) 
obey the normal law in the region of weak intensity 
fluctuations of the optical radiation propagating through the 
turbulent atmosphere, then 

Γ
2
(ρ

1
, ρ

2
; t

1
,
 
t
2
) = U2

0
 exp {– 

1
2 D(ρ

1
 – ρ

2
, t

1
 – t

2
)}, (6) 

 

where D(ρ, t) is the spatiotemporal structure function of 
the complex phase fluctuations of the plane optical wave.4 
By substituting Eq. (6) into Eq. (5), we obtain the OTF of 
the turbulent atmosphere and receiving optical system for 
"very long" exposures 
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the receiving optical system; i.e., as known,1 in this case the 
contributions of the atmospheric turbulence and receiving 
optical system are factorable. The spatial structure function 
of the complex–phase fluctuations of a plane optical wave 
propagating through the turbulent atmosphere has the 
following form4: 
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where C2
ε
 is the ground value of the structure parameter of 

fluctuations of the dielectric constant in the turbulent 
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thickness of an optically active layer of the atmospheric 
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parameter of the dielectric constant fluctuations in 
turbulent atmosphere depending on the zenith angle θ 
(θ ∈ [–π/2, π/2]), κ

m
 = 5.92/l

0
, l

0
 is the inner scale of the 

atmospheric turbulence, and L
0
 is the outer scale of the 

atmospheric turbulence. 
So, the normalized transfer function of the turbulent 

atmosphere and a telescope in the case of observation of an 
averaged image can be presented as follows: 
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ρ
c
 is the coherence radius of the plane optical wave in the 

turbulent atmosphere, whereas ρ
m
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ε
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m
)–1/2 

and ρ
0
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radius of the plane optical wave for D(l
0
) >> 1 and 
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0
) <<  1 that corresponds to the cases when l

0
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 and 

l
0
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c
, respectively. Since the characteristic scale of the 

OTF variations, M
lens

(p), is determined by the radius R of 

a receiving optical system, two cases may be considered: 
(1) when the receiving optical system radius is smaller than 

the coherence radius of the optical wave (R <<  ρ
c
) 
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(2) when the receiving optical system radius is larger than 

the coherence radius of the optical wave (R >>  ρ
c
) 

 

τ
1
(p) � exp 

⎩
⎨
⎧

⎭
⎬
⎫

– 
⎝
⎛
⎠
⎞p

ρ
c

γ

. (9) 

 

The image observed during time shorter than time of 
medium "freezing" (∼10–3 s) is not averaged ("very short" 
exposures). To eliminate the distorting influence of random 
inhomogeneities of the turbulent atmosphere, different 
methods of processing the short–exposure images are used: 
the Labeyrie6 and Knox–Thompson7 methods or the method 
of triple correlation of the image intensity.8–10 For "very 
long" exposures one measures the distribution of average 
field intensity in the focal plane of a telescopic receiving 
optical system, while methods of processing the short–
exposure images make it possible to measure statistical 
characteristics of the optical image intensity fluctuations. 
They are the variance of intensity fluctuations in the 
Labeyrie method, the spatial correlation of intensity 
fluctuations in the Knox–Thompson method, and the third 
moment of the image intensity for the special choice of 
observation points in the method of triple correlation of 
image intensity. All these methods will be considered in 
sequence starting from the Labeyrie method. The OTF in 
the Labeyrie method is found from the second moment of 
the "instantaneous" OTF of the turbulent atmosphere and a 
telescopic system (Eq. (4)) 
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is the second moment of the "instantaneous" OTF of the 
turbulent atmosphere and a telescope. By making the same 
suppositions as before when deriving the second–order 
mutual–coherence function and assuming that 

<χ2(ρ, t)> <<  1 (this condition is well fulfilled for a plane 
wave propagating along the paths through the whole  
atmosphere with at zenith angles θ ≤ 80°), we obtain 
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Analysis of Eqs. (10) and (11) shows that further 
analysis needs for the concrete form of the transmission 
function of the receiving optical system K(ρ). The 
fluctuating wave is assumed to be incident on a round lens 
with the area S = πR2, where R is the radius of receiving 
aperture. As is shown in Ref. 4, square–law exponent is a 
good approximation of the transmission function of the 
receiving aperture in this case. This fact and frequent use of 
the apodization filters to improve an image quality,11 allow 
us to choose the transmission function of the receiving 
aperture in the form 
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where K
0
 is the telescope amplitude transmission on the 

optical axis. In this case, the normalizing factor in Eq. (10) is 
<M(0)> = πU2

0
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0
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2
(0) = 1. Simple expression for the 

OTF in the Labeyrie method may be obtained from Eq. (10) 
after elementary transformations using Eqs. (11) and (12) 
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Asymptotical analysis of Eq. (13) carried out using the 
expansion of the integrand exponent into a series and 
computation of the integral over ' yields the following 
results. Two situations can occur for the receiving apertures 
with the radius less than the coherence radius of the incident 

optical wave (R <<  ρ
c
): R >> l

0
 and R <<  l

0
. Since the 

maximum values of the inner scale of the atmospheric 
turbulence are 1...2 cm, the case of receiving apertures 

satisfying the condition R <<  l
0
 belongs to an exotic type. 

Under these conditions the OTF of the Labeyrie method 
equals 
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0
(p) = exp[–p2/(4R2)] is the normalized OTF of the 

telescope for the transmission function of its entrance pupil 
(12). Comparison of the obtained expression with Eq. (8) 
shows that for small apertures it is possible to remove 
practically completely the image distortions introduced by 
the atmospheric turbulence. The case of the receiving 
apertures, which are large as compared to the inner scale of 

the atmospheric turbulence (R >>  l
0
) is of greater practical 

interest. In this case for p <<  l
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where α = 0.70. 

Bahavior of the OTF at p >>  R is not considered here 
and hereafter since it has no practical importance. Two 
cases may be also considered for the receiving apertures 
with the radii larger than the coherence radius of the 
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i.e., as for R <<  l
0
, R <<  ρ

c
, an increase in the telescope 

resolution in the atmosphere is observed over all region of 
spatial scales recorded with given apertures as  
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compared to the observation of the distribution an image 
average intensity (Eq. (9)). In turn, two situations are 

separated for the receiving apertures with R >>  l
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 in 

dependence on the ratio of the inner scale of the 
atmospheric turbulence and coherence radius of a plane 
optical wave in the turbulent atmosphere: 
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Thus, processing of a set of "very short"–exposure 
images by Labeyrie method makes it possible to eliminate 
a part of the image distortions introduced by the 
atmospheric turbulence as compared with the recording of 
averaged image (Eqs. (8) and (9)). Moreover, the higher 
is the level of turbulent fluctuations, the greater is the 
gain. The improvement is especially essential for small 
receiving apertures (R < l

0
) and for large spatial scales in 

the case of large receiving apertures (p > ρ
c
 for R > l

0
, 

R > ρ
c
). Resolution of small scales (p < l

0
) for large 

apertures (R > l
0
) when processing by the Labeyrie 

method is not higher than the resolution when recording 
averaged images. 

In the Labeyrie method, the intensity spectrum 
modulus of the recorded image is measured that does not 
allow, even in principle, the initial image to be 
reconstructed exactly. At the same time, the exact 
knowledge of the phase of the image intensity spectrum 
only makes it possible to reconstruct the initial image 
completely. The image intensity spectrum modulus can be 
reconstructed from the known values of the intensity 
spectrum phase. The methods of Knox–Thompson and 
triple correlation of the image intensity allow both the 
modulus and phase of the recorded image to be measured. 

When an image is processed using the Knox–
Thompson method, the OTF of an optical system is equal to 
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is the correlation function of the "instantaneous" OTF of 
the turbulent atmosphere and a telescope (Eq. (4)). Having 
written the fourth moment of a plane wave field in 
approximation which was used for the analysis of the 
methods considered above, substituting the expression (12) 
into Eq. (14) for the function K(ρ), and integrating over 
one of the variables, we derive the OTF of Knox–Thompson 
method  
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Analyzing Eq. (14) asymptotically using a standard method of 
calculating of multiplex integrals,4 we can show that for small 
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For telescopes with the aperture radius larger than the inner 
scale of the atmospheric turbulence but less than the 
coherence radius of a plane wave in the turbulent 

atmosphere, at ⏐p
1
 + p

2
⏐<<  l

0 

 

τ
3
(p

1
, p

2
) � τ

0
(p

1
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0
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2
)
 
× 
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⎩
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⎠
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ρ
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m
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p
1
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2
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, (16) 

and at l
0
 <<  ⏐p
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  17) 
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If the receiving telescope aperture radius exceeds the 

coherence radius of the plane wave then for ⏐p
1
 + p

2
⏐<<  l

0
 

the OTF of Knox–Thompson method is described by 

Eq. (16), and for l
0
 << ⏐p

1
 + p

2
⏐<<  ρ

c
 it is described by 

Eq. (17). For ρ
c
 <<  p

1
+p

2
⏐<<  R the following asymptotic 

dependence takes place 
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.  

(18) 
It is natural that for p

1
 = p

2
 the OTF of Knox–

Thompson method and that of the Labeyrie method are 
identical, i.e., these methods are equivalent from the point 
of view of measuring the intensity spectrum modulus of an 
image recorded. As follows from Eqs. (16)–(18), if the 
characteristic linear scale τ

3
(p

1
, p

2
) (with respect to the 

difference of arguments ⏐p
1
 – p

2
⏐) equals to the coherence 

radius of a plane wave then unique information on the 
intensity spectrum phase of an image can be obtained only 
within the limits of a speckle. A problem of "joining" the 
image spectrum phase from the neighboring speckles within 
the framework of the present method remains unsolved. 
Also it is clear from Eqs. (17) and (18) that since processing 
of the "very short"–exposure images compensates for the 
wave front slopes in the areas which are larger than or 
comparable to the receiving aperture dimensions then it 
leads to noticeable improvement of the image quality on the 
speckle scales. 

Let us finally consider the method of triple correlation of 
the image intensity. Its OFT is determined from the third 
moment of the "istantaneous" OTF of turbulent atmosphere 
and the telescope (Eq. (4)) at the points p

1
, p

2
 and –p

1
, –p

2
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2
) = <M(p

1
, t) M(p
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2
, t)>/<M(0)>3, (19) 

 

where  
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is the sixth moment of a plane wave field obtained in the 
approximation which is used in this paper for description of 
the moments of the field of an optical wave propagating 
through the turbulent atmosphere. As follows from 
Eq. (19), we have for the receiving apertures which are 
small as compared with the inner scale of the atmospheric 

turbulence for {p
1
, p

2
} <<  l

0
 for R <<  ρ

c
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and for R
 
>>  ρ

c 
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If the radius of the receiving aperture is less than the 

coherence radius of the plane wave in the turbulent 
atmosphere but larger than the inner scale of the 

atmospheric turbulence (l
0
 << R << ρ

c
), then for {p
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, (20) 

 

and for l
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 << {p

1
, p

2
} << R 
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Equation (20) is applicable for telescopes with large input 

apertures (R >>  ρ
c
) for {p

1
, p

2
} <<  l

0
, whereas Eq. (21) is 

applicable at l
0
<<  {p

1
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c
; and, for ρ
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} <<  R 

the OTF of the triple correlation method of the image 
intensity has a form 
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.  (22) 

The modulus of the intensity spectrum of an image is 
obtained from the third moment of intensity in the 
following cross sections: (1) p

1
 = p, p

2
 = 0, (2) p

1
 = 0, 

p
2
 = p, and (3) p

1
 = p, p

2
 = –p. Using the integral 

expression (19), we can show that 
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Thus, one can see that the modulus of the intensity 
spectrum of an image can be obtained from the third 
moment of the image intensity in the same range of values 
and with the same accuracy as with the use of the Labeyrie 
and Knox–Thompson methods. Information on the phase of 
the intensity spectrum of an image is in any of the octants 
of the four–dimensional space {p

1
, p

2
} confined between one 

of the axes p
1
 = 0 or p

2
 = 0 and a cross section p

1
 = p

2
 or 

p
1
 = –p

2
. Having assumed the optical wave field U(ρ, t) to 

be distributed according to the normal law, we obtain from 
the integral expression (19) the following formula relating 
the OFT of the method of triple correlation of the image 

intensity to that of Knox–Thompson (ρ
c
 <<  R) method: 
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This relation shows in explicit form the fact that the 
method of triple correlation of the image intensity 
potentially does not make it possible to obtain more 
information on the image than the Knox–Thompson 
 

method. This conclusion concerns both the measurements of 
the modulus of the image intensity spectrum and phase. The 
invariance of the method of triple correlation of the image 
intensity under shifts of short–exposure images is undoubtly 
its advantage over the Knox–Thompson method.12 

The OTFs of the "turbulent atmosphere – telescope" 
system presented in this paper for different methods of 
processing the recorded short–exposure images allow the 
following conclusion to be done. The Knox–Thompson 
method and the method of triple correlation of the image 
intensity have the highest potentialities compared to other 
methods. Moreover, it should be particularly emphasized 
that these two methods have practically equal potential 
accuracies of the image reconstruction. 

 
REFERENCES 

 
1. D.L. Fried, J. Opt. Soc. Am. 56, No. 10, 1372 (1966). 
2. D.L. Fried, J. Opt. Soc. Am. 56, No. 10, 1380 (1966). 
3. D. Goodman, Introduction to Fourier Optics (McGraw 
Hill, New York, 1968). 
4. A.S. Gurvich, A.I. Kon, V.L. Mironov, and 
S.S. Khmelevtsov, Laser Radiation in Turbulent 
Atmosphere (Nauka, Moscow, 1976), 280 pp. 
5. C. Roddier and F. Roddier, J. Opt. Soc. Am. 65, No. 6, 
664 (1975). 
6. A. Labeyrie, Astron. Astrophys. 6, No. 1, 85 (1970). 
7. K.T. Knox and B.J. Thompson, Astrophys. J. Lett. 193, 
L45 (1974). 
8. G.P. Weigelt, Opt. Commun. 21, No. 1, 55 (1977). 
9. A.W. Lohmann, G.P. Weigelt, and B. Wirnitzer, Appl. 
Opt. 22, No. 24, 4028 (1983). 
10. G.P. Weigelt and B. Wirnitzer, Opt. Lett. 8, No. 7, 
389 (1983). 
11. A. Moreshal and M. Franson, Structure of Optical 
Image [Russian translation] (Mir, Moscow, 1964) , 171 pp. 
12. I.P. Plotnikov, I.A. Rozhkov, and A.D. Ryakhin, Atm. 
Opt. 3, No. 5, 531 (1990). 
 
 

 


