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An equation for humidity determination by double–frequency phase method of 
radioacoustic sounding and numerical estimation of the effect of atmospheric turbulence on 
its performance are obtained. They are applicable at any ratio between relaxation and 
sounding frequencies. Relative deviation of humidity averaged over its turbulent 
fluctuations from such a value in nonturbulent atmosphere is obtained assuming weak 
fluctuations of speed of sound, phase differences of two frequencies and that their densities 
are distributed by Gaussian law. The phase difference fluctuations distribution variance is 
calculated for a limited Gaussian beam in a turbulent medium with Karman spectrum. For 
sufficiently large values of structure characteristics of temperature and wind velocity 
(under convective conditions at a moderate wind) the relative deviation of average 
humidity in this case does not exceed 2⋅10–3% at altitudes 50–200 m and the rms error, due 
to turbulence, in humidity measurements by the phase method does not exceed 0.6%. 

 

The method of double–frequency sounding determination 

of air humidity1 is based on the measurement of phase 
difference of acoustic waves at two different frequencies, Δϕ

a
, 

arising due to sonic speed dispersion in humid air.2 To measure 
this difference, we propose to use the integer transducer of one 
of the frequencies, that will allow us to find the dependence of 
the phase difference of acoustic waves on the difference in 
their speeds of propagation 

 

Δϕ
a
 = 2π f Z ( ΔC / C2) . (1) 

 
In Eq. (1) f = f

2
 is the frequency at which the phase 

difference is measured; Z is the distance from the plane of 
emission; ΔC = C

2
 – C

1
 is the difference between speeds of 

sound; C is the average speed of sound. Equation (1) is valid 
if the temperature and the humidity of air change slowly with 
altitude, and the refractive index for the acoustic waves, n, is 
approximately equal to unity along the path of their 
propagation. In Ref. 1 the formula is presented for humidity 
determination from the findings on phase difference. This 
formula has been derived under the condition f

r
 � f

1
 and 

f
r
 � f

2
 (f

r
 is the relaxation frequency of humid air) and 

assuming that speeds of acoustic waves differ a little and 

Bragg condition3 holds. The influence of turbulent 
fluctuations of the phase difference has been estimated here in 
the geometric optics approximation (GOA). 

As known, the relaxation frequency of a humid air is 

usually estimated experimentally2,4 or from theoretical 

calculations. The ANSI standard3 is the best known among the 
latter. For the method under consideration, the empirical 

expression4 for f
r
  

(in hertzs) was chosen 
 

f
r
 = 3.06 ⋅ 104 h1.3, (2) 

where h
 
= (e/p)100% is the molar concentration, e is the 

partial pressure of water vapor, and p is the atmospheric 

pressure. Under different meteorological conditions the value 
of relaxation frequency may vary from 0.22 to 200 kHz. The 
condition of smallness of sounding frequencies in the range  
1–10 kHz in comparison with the relaxation ones holds only 
at air temperature T > +15°C, and at low relative humidity 
H < 60% it holds at higher temperature, i.e., within a limited 
range of meteorological conditions. In the present paper the 
formula for humidity determination and estimation of 
turbulence effect were obtained which are applicable at any 
ratio between the relaxation and sounding frequencies; the 
method of smooth perturbation (MSP) was used for estimating 
the turbulence effect. 

The phenomenon of dispersion of speed of sound in 

air2,3,4 causes the difference in speed of sound at different 
frequencies. For two frequencies, f

1
 and f

2 
, this difference 

equals 
 

ΔC = 
C2

∞
 – C2

0

2 C
 
⎣
⎢
⎡

⎦
⎥
⎤f2

2

f2
r
 + f2

2

 – 
f2
1

f2
r
 + f2

1

 + ΔW, (3) 

 

where C
∞
 and C

0
 are the speeds of sound at a frequency f� f

r
 

and at f �f
r 
, respectively, ΔW is the difference between the 

wind velocity projections on the direction of acoustic waves 
propagation. If the acoustic waves of different frequencies are 
emitted simultaneously in a given direction, ΔW can be 
considered to be equal to zero along the whole path of their 
propagation. Having solved Eq. (1) with respect to h taking 
into account Eqs. (2) and (3) and removing the restrictions 
f
r
 � f

1
 and f

r
 � f

2
, we obtain the formula for the air 

humidity determination 
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applicable under any meteorological conditions. In Eq. (4) the 
plus sign determines the higher value of humidity at one and 
the same phase shift. 

When measuring the humidity by vertical radioacoustic 
sounding from data on the phase difference Δϕ

e
 = 

= (w
D2

 – w
D1

)(Z/C) between Doppler shifts of 

radiofrequencies w
D1

 and w
D2

 (w
Di

 = (4πf
e
/C

e
)C

i
; i = 1, 2; 

C
e
 is the speed of radiowave), formula (4) is applicable under 

the Bragg condition 2f
e
/C

e
 = f/C (Ref. 3), when Δϕ

e
 = Δϕ

a
. 

Similar formula is applicable when the Bragg condition does 
not hold. If f

r
 � f

1
 and f

r
 � f

2
, Eq. (4) takes a simpler form, 

derived in Ref. 1,  
 

h = exp 
⎩
⎨
⎧

⎭
⎬
⎫

0.385 ln 
⎣
⎢
⎡

⎦
⎥
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∞
 – C2

0
)

C3 Δϕ
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 ( f 2
2
 – f 2

1
)  – 7.947 . (5) 

 

When sounding the turbulent atmosphere, the turbulent 

fluctuations of sonic speed, C
1
 and C

2
, occur,5 that brings 

about the turbulent fluctuations of the average sonic speed C 
and phase differences Δϕ

a
 and Δϕ

e
. 

To estimate the effect of atmospheric turbulence on the 
accuracy of air humidity determination from phase difference 
in double–frequence radioacoustic sounding, equations (4) and 
(5) should be statistically averaged. Assuming that turbulent 
fluctuations C′, Δϕ'

a
 (or Δϕ'

e
) are small and distributed 

according to Gaussian law, we apply the linearization of 
logarithms in Eqs. (4) and (5) with respect to fluctuations C′, 
Δϕ'

a
 (or Δϕ'

e
) and the theorem about the mean value of 

exponential function of normally distributed fluctuating 
variable with zero mean. We take into account the correlation 
terms using linear approximation 

 

<exp 1.155 
Δϕ′ C'
Δϕ

0
 C

> � 1 + 1.155 
<Δϕ′ C′>

Δϕ
0
 C

. (6) 

 

In this case the relative deviation of humidity <h> averaged 
over turbulent fluctuations from that in nonturbulent 
atmosphere, h

0
, equals 
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0

h
0
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at small turbulent fluctuations C′ and Δϕ′. Here C and Δϕ

0
 are 

the unperturbed values of sonic speed and phase difference 
(Δϕ

0
 = Δϕ

a
 or Δϕ

0
 = Δϕ

e
), 

 

γ(h
0
) = ( f 2

r
 + f 2

2
) ( f 2

r
 + f 2

1
) / ( f4

r
 – f 2

1
 f 2

2
), 

 
and β = 3, if Bragg condition holds, otherwise β = 2. For f

r
 � f

1
 

and f
r
 � f

2
, when formula (5) is valid, γ(h

0
) is about unity. 

When the value of relaxation frequency is close to the values of 
sounding frequencies (at air temperature below 15°C or low 
relative humidity), the coefficient γ(h

0
) essentially differs from 

unity. Figure 1 shows the coefficient γ vs. relative humidity H. 

 
 
FIG. 1. Coefficient γ vs. relative humidity H at air 
temperature 0°C: frequencies are 3.4 and 6.8 kHz (1), 2.5 
and 5 kHz (2), 5 and 10 kHz (3), and 2.5 and 10 kHz (4). 
 

Ignoring the turbulent fluctuations of atmospheric pressure, 
the relative deviation of average absolute, e, and relative, H, 
humidity can be determined by the equality (7) too, because 
 

<e> – e
0

e
0

 = 
<H> – H

0

H
0

 = 
<h> – h

0

h
0

, 

 

where H = (p/e
s
), in %, e

s
 is the water vapor saturation 

pressure. 
To find the variance of distribution of sonic speed 

fluctuations <C′2>, let us use the relation5 
 

<C′2> = 2 C2 C2
n
 L2/3

0
, (8) 

 

where C2
n
 is the structure characteristic of the acoustic 

refractive index, L
0
 is the outer scale of turbulence, in the 

ground layer it equals 0.4 Z (Ref. 5). 
The variance of distribution of weak turbulent fluctuations 

of difference of acoustic phase at two frequencies, <Δϕ′2>, can be 
calculated on the basis of relationship for time autocorrelation 

function of phase for a limited Gaussian beam6 in a turbulent 
medium with Karman spectrum. The dependence of the spectrum 

and the structure constant of the acoustic refractive index C2
n
 on 

the parameters of moving atmosphere has been refined in Ref. 7. 
One may start from the assumption that acoustic antenna 
produces an acoustic wave with the plane phase front in the 

aperture plane.4 Under the condition Δk
a
� k

a
, where 

Δk
a
 = 2πfΔC/C2 is the difference of wave numbers of acoustic 

waves of f
1
 and f

2
 frequencies, calculated after frequency 

transformation, the authors of this paper have derived the 
relation for the variance of distribution of fluctuation of phase 
difference of wave beams 
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 (Δ k

a
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n
(κ) × 
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1 + cos
⎣
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Z – ξ

k
a

 k2 , (9) 

 

where α
1
 = 

W2 + ξ/Z

1 + Ω2 , α
2
 = 

W(1 – ξ/Z)

1 + Ω2 , Ω = 2πa2/Zλ is 

the Fresnel number of the transmitting acoustic antenna with 
the aperture radius a for the sounding wavelength λ = λ

2
, 

Φ
n
(k) is the Karman spectrum7,8 of the acoustic refractive 

index n: 
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Φ
n
(κ) = 0.033 C2

n
 (κ2 + k2

0
)–11/6,  κ

0
 = 2 π / L

0
. 

 

For Ω � 1 (plane wave) α
1
 = 1 and α

2
 = 0, and for Ω � 1 

(spherical wave) α
1
 = ξ/Z and α

2
 = 0. In this limiting cases, 

formula (9) determines the variance of distribution of 
fluctuations of phase difference between plane and spherical 

waves8. For numerical estimation of <Δϕ′2>/Δϕ2
0
 we transform 

Eq. (9) to the form 
 

<Δϕ′2> / Δϕ2
0
 =0.326 [L (Z, λ, a) / Z2], (10) 

 

where 

L (Z, λ, a) = ⌡⌠
0

Z

 dξC2
n
(ξ) ⌡⌠

0

∞

 dy(y + y
0
)–11/6 e–Ay(1 + cosB y), 

 

in m2; y
0
 = k2

0
; A = 

Ω (Z – ξ)2

k
a
 (1 + Ω2) Z

 ;  B = 
(Z – ξ) (Z Ω2 + ξ)

k
a
 (1 + Ω2) Z

 ; C2
n
 

is the structure characteristic of the acoustic refractive index,7 in 

m–2/3, Z is the sounding altitude, in m. Note that at any positive y 
 

e–Ay  < 1,  1 + cos B y  < 2. 

 

Thus, the estimation of <Δϕ′2>/Δϕ2
0
 derived for wave beams at 

weak phase fluctuations using smooth perturbation method is 
always smaller than that derived in approximation of 
geometric optics approach applicable under the condition 

(κ2(Z – ξ)/k
a
 � 1, when e–Ay � 1 and (1 + cosBy) � 2. 

The upper limit of the variance of phase difference fluctuations 
determined by the geometric–optics method 
 

<Δϕ′2> / Δϕ2
0
 < 3.64 ⋅ 10–2 C2

n
 L

0 
5/3 / Z (11) 

 

is independent of sounding frequency, the antenna size, and 

wind velocity.1 
To estimate the correlation function of the phase 

difference fluctuations and fluctuation of sonic speed, the 
effect of inhomogeneity of the acoustic refractive index along 
the path of propagation should be taken into account. In 
geometric optics approximation the fluctuations of phase 
difference Δϕ′ are linearly related to fluctuations of the 
acoustic refractive index n′ (Ref. 5): 

Δϕ′ = Δ k
0
 ⌡⌠

0

Z

 n′(κ) d κ , (12) 

 

where Δk
0
 = 2πfΔC/C2, n′ = –C′/C. Since the variance of 

phase difference fluctuations is determined by the integral 

<Δϕ′2> = (Δ k
0
)2 ⌡⌠

0

Z

 ⌡⌠
0

Z

 <n′(κ) n′(κ′)> d κ dκ′, (13) 

 

the correlation function can be related to the derivative of it 
 

Δϕ′ C'
Δϕ

0
 C

 = – 
1
Z

 ⌡⌠
0

Z

 <n′(κ)n′(Z)>d κ= – 
1

2Δϕ
0
Δk

0

 
∂

∂Z<Δϕ′2> = 

 

= – 
<Δϕ'2>

2 Δϕ2
0

 

∂
∂ Z (C2

n
 Z8/3)

C2
n
 Z5/3 ,  (14) 

 

having used Eq. (11). 
Over dry underlying surface the structure constant of the 

humidity fluctuations and correlation of temperature and 
humidity is several orders of magnitude smaller than those of 

fluctuations of temperature and wind velocity. In this case for C2
n
 

calculation in Eqs. (8), (11), and (14) the following formula7  
 

C2
n
 = 1/4(C2

T
 / T2 + 7.33 C2

V
 / C2) (15) 

should be used. 
Let us consider now the case of sufficiently large values 

of structure characteristics determined by empirical equations3 
(under convective conditions at a moderate wind): 
 

C2
T
 = C

T
0
 (Z / Z

0
)–4/3; 

(16)
 

C2
V
 = C

V
0
 (0.03 + 0.97 (Z / Z

0
)–2/3) , 

 

where C
T0

 = 62 deg2 m–2/3, C
V0

 = 1.54 m4/3s–2, Z
0
 = 10 m. 

Let us use the relation (15) and altitude dependences 
(16) to estimate the correlation function (14) 
 

<Δϕ′ C′> / Δϕ
0
 C � – 1.2 <Δϕ′2> / Δϕ2

0
, (17) 

 

and the variance of fluctuations of phase shift and sonic speed 
 

<Δϕ′2> / Δϕ2
0
 <~ (1.1 ÷ 2.1) ⋅ 10–7; 

(18)
 

<C′2> / C2 � (1.5 ÷ 2.9) ⋅ 10–5 
 

at an altitude 50–200 m at air temperature from +20 to 40°C 
and relative humidity H > 30%. As a result, the turbulent shift 
of the average humidity h according to Eq. (7) and numerical 
estimates (17) and (18) is mainly determined by the effect of 
sonic speed fluctuations and equals to  
 

⏐(<h> – h
0
) / h

0
⏐ <∼ (1.0 ÷ 1.9) ⋅ 10–3%. 

 

In conclusion let us calculate the rms deviation 

<(h – h
0
)2>/h

0
 under the same meteorological conditions in a 

turbulent atmosphere under the condition f
r
 � f

1
 and f

r
 � f

2 

 

<(h – h
0
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h
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 = 
1
h
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∂Δϕ

2
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= 0.385
<Δϕ'2>

Δϕ2
0

 + 3 
<Δϕ' C'>

Δϕ
0
 C

 + 9 
<C'2>

C2 , 

 

where 
∂h
∂C and 

∂h
∂Δϕ are the derivatives of the humidity h. At an 

altitude 50–200 m and air temperature from 20 to 40°C we 
obtain from numerical estimates (17) and (18) 

<(h – h
0
)2>

h
0

 <~ (0.45 ÷ 0.62) %. 
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If there are only temperature inhomogeneities in the 
atmosphere then the absolute value of variance of 
fluctuations of the phase shift <Δϕ′> increases with 
increasing altitude more slowly than the square phase shift 

Δϕ2
0
, because at an altitude below 1 km the structure 

function C2
n
 decreases rapidly with altitude. Under this 

conditions the rms error and turbulent shift of the average 

humidity decrease proportionally to Z–1/3 and  

Z–2/3, respectively. However, such conditions are very rare. 
Under the effect of wind velocity inhomogeneities  
the rms error and turbulent shift of humidity increase 

proportionally to d + bZ2/3 and d + bZ2/3,  
where d and b are the functions of air temperature.  
Thus, for the developed turbulence (under convective 
conditions at moderate wind) the relative deviation  
of the average humidity and rms error of humidity 
measurements by phase difference due to turbulence  
in double–frequency radioacoustic sounding are  
essentially smaller than those in the amplitude radioacoustic 

sounding.9 
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