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A lateral shear interferometer has been analyzed based on a double$exposure 

recording of the Fourier hologram with the use of mat$screen microscope. It is shown both 

theoretically and experimentally, spatial filtering, being performed in the hologram plane, 

allows one to separate out wave aberrations introduced by the microscope over its field of 

view. 
 

As was shown in Ref. 1, a double$exposure recording 
of a mat screen image using collimating Kepler optical 
system results in the formation of lateral shear 
interferograms in the far diffraction zone, in the bands of 
infinite width, which characterize wave aberrations over 
field of a two$component optical system. As this takes 
place, prior to the second exposure, the compensation for 
phase shift in light waves was performed by tilting waves, 
used for illumination of the mat screen, and reference wave 
front. Similar results can be obtained by matching the 
subjective speckle fields of two exposures in the mat screen 

image plane.2 

For a two$component optical system like a Galilean 

telescope, a double$exposure recording of a hologram of a 
virtual image of a mat screen results in the formation of a 
lateral shear interferograms in the near diffraction zone. 
These interferograms characterize wave aberrations over the 
optical system field and phase distortions of a quasiplanar 
wave front of radiation used for illumination of the mat 

screen.3 Superposition of subject speckle fields of the two 
exposures at displacement of the telescope and a 
photographic plate prior to its reexposure allows the 
recording of interference patterns characterizing only the 

telescope wave aberrations over its field to be done.4 
In the present paper the conditions of lateral shear 

interferogram formation in the bands of infinite width are 

analyzed for the case of double$exposure recording of the 
Fourier hologram of a mat screen using a microscope with 
spatial filtration of the diffraction field at the stage of 
reconstruction. 

As shown in Fig. 1, a mat screen 1 placed in (x
1
, y

1
) 

plane is illuminated with an aberrationless diverging 
spherical wave with the curvature radius R, which is formed 
with lens L

0
 and point aperture in an opaque screen p

0
 

located in its focus. Its image is constructed in the front 
focal plane of lens L

2
 (microscope ocular) with the use of 

lens L
1
 (microscope objective). The recording of mat screen 

Fourier hologram is performed on a photographic plate 3 
placed in (x

4
, y

4
) plane during the first exposure using off$

axis quasiplanar reference wave 2. Prior to recording the 
second exposure, the mat screen is shifted in its plane, for 
example, along the x axis at a distance a, and the reference 
wave front angle in (x, z) plane is changed from θ

1
 to θ

2
. 

 

FIG 1. The optical scheme used for recording and reconstruction 
of double $ exposure Fourier hologram: mat screen (1), reference 
beam (2), photographic plate $ hologram (3), interferogram 
plane (4), lenses L

0
, L

1
, L

2
, L

3
, filtering diaphragms p

0
 and p

3
, 

and aperture diaphragms p
1
 and p

2
. 

 

Thus recorded double$exposure hologram is reconstructed 
using initial reference wave, and spatial filtering of the 
diffraction field in the hologram plane using an opaque screen p

3
 

with a hole makes it possible the lateral$shear interferogram to 
be recorded in Fourier plane 4 in bands of infinite width. The 
interferogram characterizes the microscope wave aberrations. 

In the Fresnel approximation (constant amplitude and 
phase factors are omitted) the complex amplitude of the object 
field, corresponding to the first exposure, in (x

4
, y

4
) plane of a 

photographic plate can be written in the form: 
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where k is the wave number, t(x
1
, y

1
) is the complex 

amplitude of a mat screen transparency, being the random 
function of coordinates, p

1
(x

2
, y

2
) is the generalized function 

of the pupil of lens L
1
 (Ref. 5) with the focal length f

1
, which 

allows for its axis wave aberrations, p
2
(x

3
, y

3
)exp i ϕ(x

3
, y

3
) 

is the generalized function of the pupil of lens L
2
 with the 

focal length f
2
, Δ is the optical length of a microscope viewing 

hood, l
1
 is the distance from the principal plane (x

2
, y

2
) of L

1
 

lens to the mat screen, l
2
 is the distance from the principal 

plane (x
3
, y

3
) of L

2
 lens to the photographic plate. 

If the condition 1/R + 1/l
1
 $ N/l2

1
 = 0, where 
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1
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, holds, the 

Eq. (1) can be reduced to the form 
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where ⊗ denotes the operation of convolution; 
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are the Fourier transforms of corresponding functions. 
Since the width of the function P

1
(x

4
, y

4
) is of the order 

of λ(f
1
 + f

2
 + Δ)l

2
/(Md

1
) (see Ref. 6), where λ is the 

wavelength of coherent radiation, used for hologram recording 
and reconstruction, d

1
 is the diameter of pupil of lens L

1
,we 

assume that within the domain of this function the phase 
change of a spherical wave with the curvature radius 

(f
1
 + f

2
 + Δ)2l2

2
/NM2 is below π. Then, taking into account 

that the condition 1/l
1
 + 1(f

1
 + Δ) = 1/f

1
 holds for a 

microscope, for the photographic plate area with the diameter 

D
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 ≤ d

1
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characterizing the spherical wave phase distribution, can be 
factored outside the integral of convolution with the function 
P

1
(x

4
, y

4
) in Eq. (2). Thus we obtain 
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is the inverse Fourier transform of the mat screen transmission 
function, f = f

1
f
2
/Δ is the microscope focal length, 
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is the inverse Fourier transform of the generalized function of 
the objective pupil. 

Since the width of function P
2
(x

4
, y

4
) is of the order of 

λl
2
/d

2
, where d

2
 is the diameter of L

2
 lens pupil, we suppose 

that within its domain the phase of spherical wave with the 
curvature radius l

2
 varies within π. Then for the photographic 

plate area with the diameter D
2
 ≤ d

2
 we remove the factor 

exp[ $ ik(x2
4
 +y2
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 )/2l
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] from the integral of convolution with 

the function P
2
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) in Eq.(3) and thus we have 
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As follows from Eq. (4), if d
2
 ≥ d

1
f
1
/(f

1
 + Δ) then 

within the photographic plate area with the diameter D
1
 the 

Fourier transform of input function can be convoluted with 
the pulse response of microscope objective and ocular, i.e., 
each point of inverse Fourier transform of the mat screen in 
(x

4
, y

4
) plane is broadened to the size of a subjective speckle 

determined by the width of function P$1
1
(x

4
, y

4
). In this case, 

as in the case of a single$component optical system being used 

for formation of the mat screen Fourier transform,7 the Fourier 
transform is being scaled according to the focal length with 
the scale being independent of the wave front curvature radius 
of radiation used for the mat screen illumination. The position, 
l
2
 = f

2
(1 + f

2
/Δ + ff

1
/RΔ), of (x

4
, y

4
) plane of transform 

only depends on the curvature radius, and, consequently, the 
width of optical system pulse response depends on it too. 

Distribution of the object field complex amplitude, 
corresponding to second exposure, over the photographic plate 
takes the form 
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according to a known property of the Fourier transform. 
In the approximation used the complex amplitudes of 

reference wave in the photographic plate can be presented in the 

form 
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where ϕ
3
(x

4
, y

4
) is the deterministic function characterizing 

the phase distortions of the reference wave due to the wave 
aberrations of optical system forming it, b is the shift caused 
by the change of tilt angle of the reference wave front before 
the reexposure of the photographic plate. 

Let us assume further that amplitude transmission of a 
hologram depends linearly on the intensity and that the 
hologram is illuminated by a copy of the reference wave 
corresponding, for example, to that used for first exposure. 
Then in the hologram plane the distribution of field of 
diffraction in the minus first order takes the form 
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If the condition sinθ
1
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2
 $ a/f = 0 holds, the 

expression (6) reduces to the form: 
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As follows from Eq.(7), the subjective speckle fields of 

both exposures coincide in the hologram plane at a relative tilt 
angle between them being α = a/f, and information about the 
phase distortions introduced by the microscope objective and 
ocular is within an individual speckle. Consequently, the 
interference pattern caused by reference wave aberrations is in 
the hologram plane as has been shown in Ref.7. If the opaque 
screen p

3
 (Fig. 1) with a hole at its center is installed in the 

hologram plane and the condition ϕ
3
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4
, y

4
) $ ϕ

3
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4
 + b, y

4
) ≤ π 

holds within this hole, i.e., the width of an interference band of 
the interference pattern located in its plane is smaller than the 
diameter of filtering aperture then the diffraction field in the 
filtration plane is determined by the equation 
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where p
3
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4
, y

4
) is the transmission function of the screen 

with a round hole.8 
Let us present the light field in the rear focal plane of 

lens L
3
 (Fig. 1) with the focal length f

3
 in the form of a 

Fourier integral of light field in the plane of spatial filtration. 
Then using the property of Fourier transform we obtain 
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is the Fourier transform of the transmission function of 
filtering screen. 
It follows from Eq. (9) that if the diameter D

0
 of the 
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Expression (10) describes the speckle structure 
modulated by the interference bands. Interference pattern 
looks like a lateral shear interferogram in the bands of infinite 
width, which characterizes the axial wave aberrations of a 
two$component optical system. This is because the 
information about the phase distortions introduced into light 
wave by the microscope objective and ocular is within a 
separate speckle in the hologram plane. 

Thus, spatial filtration, when being done on the optical axis 
in the hologram plane, enables one to isolate, from the spatial 
spectrum of waves scattered by a mat screen, a narrow interval of 
spatial frequencies about the direction along the optical axis of 
the microscope. Displacement of filtering diaphragm along x axis 
in the hologram plane leads to the formation of lateral shear 
interferogram in the bands of infinite width, which characterizes 
the combination of on$axis and off$axis wave aberrations of the 
microscope objective and ocular. 

In this case the filtering hole isolates a narrow interval of 
spatial frequencies near the direction along spatial frequency 
x

40
/λf, where, x

40
 is the coordinate of the center of filtering 
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aperture. Assuming that the displacement is small in 
comparison with the diameter of pupils of lenses L

1
 and L

2
, it 

can be shown that because of limitations of beams in the 
microscope optical system the range 2ω of wave aberrations 
control over field is determined by the value 

tan 2ω = 2(x
40
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To record the interference pattern located in the 
hologram plane, the spatial filtering of diffraction field on 
optical axis in the frequency plane of a collimating optical 
system of two positive lenses installed behind the hologram is 
needed as in Ref. 9. In this case the extent of interference 
pattern in space is limited by the size of the mat screen 
Fourier transform in space. To record it in the whole area of 
D ≥ d

1
f
2
(f

1 
+ Δ), where the subject field exists in the 

hologram plane, we will consider the spatial filtering of 
diffraction field on the optical axis as shown in Fig. 2.  

 

 
 

FIG 2. The optical scheme of recording the interferogram 
located in the hologram plane. 

 

Field distribution in the hologram plane takes the 
following form in this area: 
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If the lens L

3
 in Fig. 2 is in the hologram plane and the 

condition 1/l
2
 + 1/l

3
 = 1/f

3
 holds, the complex amplitude of 

the field of two exposures in (x
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, y
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) plane is determined by 

the expression 
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Let the condition 1/f
3
 = 1/l

3
 + 1/l

4
 be satisfied for the focal 

length of L
4
 lens (Fig. 2), for which p

3
 is the aperture 

diaphragm. Then the diffraction field distribution in the 
recording plane 4 takes the form 
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where μ
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 is the scale factor of image transformation, 
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are the Fourier transforms of corresponding functions. 
Let us now write down the expression for light intensity 

distribution in the recording plane. In so doing and in order to 
exclude the speckle effect from consideration, we introduce 
averaging over the coordinates, assuming that the averaging 
area is far greater than a speckle while, at the same time, the 
phase factor exp i [ ϕ
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remains constant within this area. Moreover, we also assume 
that the phase distortions introduced into the wave by the 
objective are caused only by defocusing, as in Ref. 10, and the 
value of d

1
/μ

5
 is assumed to be larger than the diameter of 

filtering aperture. Then for the case of equal average values of 
field intensities, corresponding to the first and second 
exposures, we obtain 
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is the normalized correlation function, ϕ = arg V, E is the factor 
characterizing defocusing. As follows from Eq. (16), the portion 
of (x

5
, y

5
) plane, where the integrand of Eq. (16) is nonzero, has 

the area equal to the total area of the filtering diaphragm and 
that of the same aperture but displaced relative to the first one 

by the distance μ
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7 
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. When these two areas do not 

ovelap, V equals zero. Moreover, for V ≠ 0 the view of 
interference pattern changes because of the factor  

exp($i k μ
5
μ

7 
Ea

1
x

6
l
3
/l

2
), characterizing the phase distortions 

introduced into light wave by the objective. For  
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 << d, where d is the diameter of filtering 

diaphragm, and d≤ λl
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, the interference pattern can 

be recorded with a sufficiently high contrast, within the domain 
of existence of the object field in the photographic plate plane. 
This pattern characterizes the reference wave front phase 
distortions due to wave aberrations of the optical system forming it. 

In experiment double exposure holograms were 
recorded on photographic plates of the type Mikrat VRL 
using He$Ne laser radiation at the wavelength of 0.63 μm. 

Fourier transform of mat screen being illuminated by a diverging 
spherical wave with R = 180 mm was formed using a microscope 
with the focal length of the objective f

1
 = 35 mm and that of 

ocular, f
2
 = 50 mm, and the diameters of pupils respectively d

1
 

= 8 and d
2
 = 12 mm. Optical length of the microscope viewing 

hood was equal to Δ = 80 mm. 
 

 
 a   b 
 

FIG. 3. Lateral shear interferograms located in far diffraction 
zone and recorded with on$axis (a) and off$axis (b) spatial 
filtering. 
 

As an example, Fig. 3a shows the interferogram 
recorded with spatial filtering on optical axis in the 
hologram plane as reconstructed with a small aperture laser 
beam. To this end, the laser radiation was focused with a 
long$focus lens of f

0
= 500 mm. Interference pattern 

characterizes the spherical aberration with the defocusing of 
the microscope optical system being behind its focus. Prior 
to second exposure recording the mat screen was displaced 
in the direction normal to the optical axis by the distance 
a = (0.17 ± 0.002) mm and the reference beam tilt angle 
was changed by the value Δθ = 28 ± 10 . 

The interferogram presented in Fig.3b was recorded 
with a spatial filtering by way of displacement of the 
hologram by 1.5 mm with respect to the beam used for its 
reconstruction. It characterizes the combination of on$axis 
and off$axis wave aberrations of the microscope optical 
system and corresponds to the case of diffraction of a plane 
wave, whose direction makes an angle ω with the 
microscope optical axis, at objective pupil. Further 
displacement of the hologram relative to laser beam 
reconstructing it leads to the recording of interference 
pattern, the spatial extent of which decreases due to 
limitations of beams in the microscope optical system. 

 

 
 

FIG. 4. Lateral shear interferogram located in the hologram 
plane. 

 
Lateral shear interferogram in the bands of infinite width 

shown in Fig. 4 characterizes the phase distortions of the part of 
reference wave front due to wave aberrations introduced by the 
optical system forming it. It was recorded with the spatial 
filtering on optical axis according to scheme shown in Fig. 2. The 
extent of interference pattern limited by the area of the object 
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field existence in the hologram plane was 5 mm that corresponds 
to the calculated value. 

The theoretical and experimental results presented 
show that the method of double exposure recording of a 
Fourier hologram with a microscope provides formation of 
the lateral shear interferograms in bands of infinite width 
with diffusely scattered light. As this takes place, the 
interference pattern characterizing the wave aberrations of 
the microscope optical system is located in the far 
diffraction zone and for its recording the spatial filtering 
should be done in the hologram plane. Moreover, the spatial 
filtering allows the interference patterns, which correspond 
to the spatial frequencies of waves scattered by the mat 
screen, to be be separated out thus providing for a control 
of the wave aberrations over the field. 
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