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Expressions for spectroscopic parameters a
m
(K) determining rotational energy of a 

molecule have been derived for slightly asymmetric molecules with internal rotation. These 

expressions depend on a solution of the Schro"dinger equation that takes into account the 
periodicity of the potential function and strong interaction between internal and external 
rotation. It has been suggested that the solution of this equation for its eigenvalues be 
sought as a ratio of the Fourier series in the rotational quantum number K. The expressions 
for a

m
(K) have been applied to the CH3OH molecule with triad rotational axis. 
 

INTRODUCTION 

 

Molecules with internal rotation form a sufficiently large 
group of nonrigid molecules. Torsional vibration of large 
amplitude can be manifested even in simple tetratomic molecules 
such as H2S2, N2H2, H2O2, ... In polyatomic molecules 

(CH3NH2, CH3OH, ...) it is usually related to rotation of group 

of atoms (tops) about a certain axis. It is of interest to study 
such molecules to solve complicated problems that arise in 
interpretation of spectra of these molecules. Moreover, some of 
them (e.g., the H2O2 molecule) are constituents of the Earth's 

atmosphere. The other molecules (e.g., the CH3OH molecule) 

represent a rich and efficient medium for molecular lasers. 
As of the present time, it is possible to identify two basic 

approaches used in theoretical description of spectra of the 
molecules under study. The first approach is based on calculus of 
variations with the potential function V0(γ) being modeled by 

the Fourier series1–5 

 

V0(γ) = ∑
l

 V
l N /2 (1 – cos ( N l γ))  (1) 

 

in the variable γ describing the torsion in molecule with N–

fold rotational axis. The second approach, widely used in 
particular for the methanol molecule, is based on an 

empirical formula for rotational energy6–8 

 

E( K, q, J) = ∑
m

 a
m
 ( K, q) [ J( J + 1)]m + 

 

+ 1/2+ 
( J + K)!
( J – K)! [ S( K, q) + J( J + 1) T( K, q)] .  (2) 

 

In this expression, J is the principal rotational quantum number; 
K is the projection of J onto the rotational axis of the top; and, 
q is a set of the remaining quantum numbers. The second term in 
Eq. (2) describes splitting of energy levels due to molecular 
asymmetry. The procedure of identifying the spectrum based on 
Eq. (2) is simple and efficient; however, the number of 
adjustable parameters a

m
(K, q) determined for each K and q is 

sufficiently large.8 Expansion of a
m
(K, q) in a power series in 

the quantum number K is divergent even for small K, and there 
are no other presently available representations for a

m
(K, q). 

In this paper, the analytical dependence of the 
spectroscopic parameters a

m
(K, q) on the rotational 

quantum number K has been derived. The analytical 
expressions for a

m
(K, q) are pri marily determined by the 

solution of the Schro"dinger equation that takes into account 
periodicity of the potential function and strong torsion–
rotation interaction in the molecule. 

 
ANALYTICAL REPRESENTATION FOR THE 

DEPENDENCE OF TORSIONAL ENERGIES ON THE 

ROTATIONAL QUANTUM NUMBER K 

 
Let us consider the particular case of molecule with 

triad internal rotation axis, i.e., assume N = 3 in Eq. (1) 
and take account of only the first term in this expansion. 

Then the Schro"dinger equation describing torsion takes the 
form 

 

Htor
0  ϕ

n σ(γ) = 
⎩
⎨
⎧

⎭
⎬
⎫

 – F 
ä2

ä γ2
 + V3/2 (1 – cos 3γ)  ϕ

n σ(γ) = 

 

= E
n σ ϕn σ(γ) .  (3) 

 

In this expression the coefficient F = h/8π2cI
γ
 (I

γ
 is the 

tensor of inertia about the axis of internal rotation1); V3 

describes the height of a potential barrier for this rotation; 
n is the principal torsional quantum number; and, the 
subscript σ describes symmetry (periodicity) of the wave 
function and for N = 3 takes the three values: 0, ±1. 

Equation (3) is the Mathieu equation,9 which can be solved 
by numerical methods. Let us also consider the term 
W = 2pFKJ

γ
 (Refs. 1 and 3) from the initial molecular 

Hamiltonian, which describes interaction between the 
torsion (operator J

γ
 = – i∂/∂γ) and total rotation (quantum 

number K). In the expression for W, the parameter 
p = I

γ
/I

z
 determines the relation between the inertia 

tensors I
γ
 and I

z
 about the principal rotational axis z. If the 

term W is considered as perturbation to Eq. (3), then in the 
perturbation theory it generates the series 
 

E
n
( K) = E

n
 + ∑

m

 κ
m
 (2 p F K)m,  (4) 
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where κ1 = V
nn

, κ2 = – ∑
i 1  n

 
 V

ni
V

in
/(E

i
 – E

n
), ... (expressions 

for κ3 and κ4 can be found, e.g., in Ref. 10). 

Here the subscript σ is omitted for brevity, 
V

ni
 = <nσ⏐J

y
⏐iσ′>, and for σ = 0 all κ2m + 1 = 0. Using the 

maximum matrix element V
nn±1, one can estimate (tentatively) 

the convergence radius R
k
 = Kmax of series (4) from the 

expression 
 

| V
n n±1 / ( E

n
 – E

n±1) | 2 p F Kmax = 1 , 

 

which reduces to the formula 
 

R
K
 = | ( E

n
 – E

n±1) / V
n n±1 | (2 F p)– 1.  (5) 

 

By the method of continued fractions,1 using the values 
of the parameters F and V3, we can assess the first Fourier 

coefficients for the wave functions ϕ
nσ = 0 and hence the radius 

R
k
. If the convergence radius is sufficiently large, then the 

dependence of torsional energies on the quantum number K 
can be expressed by series formula (4). For small radius R

k
, 

the perturbation theory cannot be used, and the term W 
should be considered in zero approximation in combination 

with Htor
0 . Such a situation appears, e.g., for the methanol 

molecule. The estimate of the convergence radius R
k
 for this 

molecule reveals that R
k
 ≅ 5 for the ground state (n = 0, 

σ = 0) and R
k
 ≅ 0.5 for n = 1, σ = 0 as well as for the state 

cn = 2, σ = 0. For such molecules the dependence of torsional 
energies E

nσ
(K) on the quantum number K has to be found 

from the equation 
 

{ F J
γ
2 + 2 F p K J

γ
 + V3 / 2(1 – cos (3γ))} ψ

n σ(γ; K) = 
 

= E
nσ

(K) ψ
nσ

(γ; K) , (6) 
 

which is also the Mathieu equation.9 To determine the form of 
E

nσ
(K), the property of periodicity of the potential function 

V0(γ) can be used, as was done in Refs. 2 and 11. The wave 

function ψ
nσ

(γ; K) can be written as5,11 

 

ψ
n σ(γ; K) = exp [ i (σ + K p)γ] ∑

m

 bnK σ
m

 exp ( i 3 mγ). (7) 

 

It is seen from this formula that any change of the value 
 

σ( K) = σ + p K 
 

by a factor multiple of three does not change the solution for 
the wave function. This fact can be used for searching E

nσ
(K) 

as a periodic function of the parameter θ = a′K (a′ = 2πp/3). 
In Refs. 2 and 11, it has been suggested that the expansion in 
the Fourier series be used for internal energy E

nσ
. For the 

molecule with the triad rotational axis, it assumes the form 
 

E
n σ( K) = ∑

l

 w
l
 cos l(θ +θ0) . (8) 

 

In this expression, θ0 = –(2π/3)σ, and w
l
 are the parameters 

independent of σ. 
In the present paper, the following expression for the 

torsional energy levels is used: 
 

E
n σ( K) = ∑

l

 b
l
 cos l(θ +θ0) / (1 + ∑

l

 z
l
 cos l(θ +θ0)), (9) 

which is also a periodic function of the parameter θ and allows 
one, as is shown for the CH3OH molecule, to improve 

substantially the convergence of Eq. (9) as compared to 
Eq. (8). The expression (9) can be derived in approximation 
similar to the approximation of "strong bond" widely used in 
the quantum theory of solid body when considering the motion 
of electron with a given momentum in a periodic field of 
crystal lattice (see, e.g., Refs. 12 and 13). In this case, the 
approximation is valid for torsional energy levels lying below 
the top of a potential barrier. In the approximation under 
study, the potential function V0(γ) is represented as a sum of 

one–dimensional potentials spaced at a = 2π/3 
 

V0(γ) ≅ ∑
m

 W
m
(γ – a m), 

 

and the wave function is represented as a sum of wave 
functions 
 

ψ
n
(γ; K) ≅ ∑

m

 exp[ i σ( K) m a] ϕ
n
(γ – a m), (10) 

 

localized above individual potentials. Substitution of Eq. (10) 
into the formula for the energy 
 

E
n
( K) = < ψ

n
 | Htor

0  | ψ
n
 > / < ψ

n
 | ψ

n
 > , 

 

where Htor
0  can be found from Eq. (3), leads to expression (9) 

in which the denominator appears due to overlap of the wave 
functions ϕ

n
(γ – am) and ϕ

n
(γ – al). The internal energy 

E
n
(K) is the smooth function of the quantum number K for 

fixed torsional quantum numbers n and τ. For given n, the 
quantum number τ takes the three values: 1, 2, or 3 and is 

related to σ by the following relations5: K + τ = 3N + 1 for 
σ = 0, K + τ = 3N for σ = 1, and K + τ = 3N + 2 for σ = –1, 
where N is an integer. By introducing the parameter 
α = (2π/3)(1 – p) into Eq. (9), expression for E

nτ
(K) can be 

written in the form: 
 

E
nτ
(K) = ∑

l

  α
l
 cosl(aK – θ0′) / (1 + (∑

l

  z
l
 cosl(αK – θ0′))) , 

 

where θ0' = 0 for τ = 1, θ0' = 2π/3 for τ = 2, and θ0'  = –2π/3 

for τ = 3. From this formula, one can obtain a convenient 
expression for combinations of torsional energies 
 

E(–)
n

( K) = { E
nτ=2 – E

nτ=3( K)} / 2 =  
 

= ∑
l

 a′
l
 sin (α K l) / (1 + ∑

l

 z′
l
 cos (α K l) + ...) = 

 

= ∑
l

 a
l
 sin (α K l) / (1 + ∑

l

 z
l
 K2 l + ...) . (11) 

 

ANALYTICAL REPRESENTATION FOR THE 

SPECTROSCOPIC PARAMETERS a
m
(K) 

 
The expression obtained for torsional energy levels 

enables one to find easily the analytical form for the 
spectroscopic parameters a

m
(K). For slightly asymmetric 

molecules with internal rotation, the corrections for the energy 
levels caused by molecular asymmetry can be taken into 
account according to the perturbation theory. In this case, the 
matrix of molecular Hamiltonian, which is nondiagonal on the 
basis of torsion-rotation wave functions, is reduced to a 
diagonal form. The form of the matrix elements coincides with 
expression (2). For m = 0, the parameter a0(K) determines the 

rotational energy (for a hypothetical level with J = 0), i.e., 
 

a0( K) = E
n τ( K) + Erot( K) ,  (12) 
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where the second term describes rotation of the entire 
molecule and can be conventionally represented as 

Erot(K) = A K2 – D
K
 K4 + H

K
 K6 + ... 

For torsional states with τ = 2, 3, it is convenient to convert 
to the combinations 
 

a(±)
0 ( K) = {a0( K, τ = 2) ± a0( K, τ = 3)} / 2 (13) 

 

and to make use of relation (11). When the matrix is 
diagonalized using the perturbation theory (PT), there appear 
the dominators a0(K, τ) – a0(K′, τ′) in the formulas for 

spectroscopic constants a
m
(K). They are assumed to be 

"sufficiently large" and allow the use of PT (without random 
resonances). Otherwise, the matrix of Hamiltonian should be 
diagonalized numerically. Here, we omit the detailed derivation 
of the parameters a

m
(K) and consider final expressions for the 

first coefficients a1(K) and a2(K) that were obtained using either 

representation (9) for torsional energies or power–law 
representation for these energies. Thus, the rotational "constant" 
a1(K) has the form

 
 

a1( K) = 

∑
i

  a
i
 Ki

1 + ∑
i

 z
i
 cos l(a K + θ0) + ∑

i

 
∼
z
i
 sin l(a K + θ0)

 

or 

a1( K) = 

∑
i

  a
i
 Ki

1 + ∑
i

 z
i
 Ki

 .  (14) 

It should be noted that in the numerators the series expansion of 
trigonometric functions in the parameter K was used, for these 
functions no to be confused with polynomial ones. The formula 
for the quadratic constant a2(K) has the form 

a2( K) = 

∑
i

  a
i
 Ki

1 – K2 + ∑
i

 z
i
 Ki

 .  (15) 

In the aforegiven formulas, a
i
, z

i
, and ∼z

i
 are the adjustable 

parameters that should be determined from the experimental 
values for a

m
(K). 

 
APPLICATION TO THE METHANOL MOLECULE 

 

As of the present time, a large number of experimental 
values of the parameters a

m
(K) are known for the methanol 

molecule that were obtained by experimental data processing. 
These values can be used to check the analytical expressions for 
the parameters under study. The results of this check are listed in 
Tables I–III. In the first column of the tables, there are 
analytical formulas for a

m
(K); in the second column, there is the 

number of adjustable parameters; in the third column, there is a 
maximum error in fitting the experimental results; and finally in 
the last column, there are the quantum numbers K for which the 
experimental parameters a

m
(K) were used (at random resonances 

formula (2) is inapplicable; therefore, some of the parameters 
a
m
(K) cannot be used to solve the inverse problem). In the 

tables, a comparison with the polynomial representation of these 
parameters is made. In particular, as is seen from Tables I and 
III, polynomial representation cannot be used for combinations of 

torsional energies a(–)
0 (K) and quadratic constants a2(K). 

Moreover, an analysis reveals that the increased number of 
adjustable parameters does not ensure the acceptable accuracy of 
approximation of the experimental data (such accuracy can be 
ensured when the number of adjustable parameters approaches 
the number of experimental data). Fitting by new models seems 
to be sufficiently good. 

 
TABLE I. Quality of fitting the parameters a

0
(K) (see Ref. 8) for the ground state of the CH3OH molecule. 

 

Model L amax
0  × 104 “m– 1

 K 

 a0( n = 0, τ = 1) 

P(8) 7 26.35  

a0 + 

∑

l=1

5 a
i
 K2 i

1 + z4 K
4 + z6 K

6 

7 2.6 K ≤ 14 

K ≠ 9, K ≠ 12 

 
a(+)

0  = 
1
2
 { a0(τ = 2) + a0(τ = 3)} 

P(8) 8 33.4 K ≤ 14 

a0 + 
a1 K + a2 K

2 + a4 K
4 + a6 K

6+ a8 K
8

1 + z1 K + z2 K
2 + z3 K

3  

 

8 
 

4.4 
 

 
a(–)
0  = 

1
2
 { a0(τ = 2) – a0(τ = 3)} 

P(5) 5 13100 K ≤ 10 
a1 sin (a K) + a2 sin (2a K) + a4 sin (4a K)

1 + z1 K
2  

5 7.1 K ≤ 10 

∑

l=1

4a
i
 sin (a i K)

1 + z1 K
2 + z2 K

4 

7 4.4 K ≤ 14 
K ≠ 13 

____________________ 

Note: amax
0  = max ⏐acal

0  – aexp
0 ⏐; L is the number of adjustable parameters a

i
, z

i
, α, and P(N) = ∑

 i=0

N

 a
i
 K2i. The value 0.3970871 

was found for the parameter α. The value of the parameter a0 was borrowed from Ref. 8. 
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TABLE II. Quality of fitting the parameters a
1
(K) (see Ref. 8) for the ground state of the CH3OH molecule. 

 

Model L amax
1  × 106 “m– 1

 K 

 a1(
 n = 0, τ = 1) 

P(3) 3 10.7  

a0 + 
a2 K

2 + a4 K
4

1 + z2 K
2 + z4 K

4 

 
4 

 
7.9 

K ≤ 14 

K ≠ 8, K ≠ 9 
K ≠ 13 

a0 + 
a2 K

2 + a4 K
4

1 + z1 sin (a K)
 

 
3 

 
5.8 

 

 a1( n = 0, τ = 2) 

P(4) 4 12  

a0 + 
a2 K

2 + a4 K
4

1 + z1 K + z2 K
2 

 
4 

 
11.5 

K ≤ 14 

K ≠ 1, K ≠ 7 

a0 + 
a2 K

2 + a4 K
4

1 + z1 sin (a K – q0)
 

 
3 

 
12 

 

 a1( n = 0, τ = 3) 

P(4) 4 42.1  

a0 + 
a1 K + a2 K

2

1 + z1 K
2 + z2 K

4 

 
4 

 
8.7 

K ≤ 14 

K ≠ 1 
K ≠ 13 

a0 + 
a2 K

2 + a4 K
4

1 + z1 sin (a K + q0)
 

 
4 

 
10.9 

 

____________________ 

Note: α = 0.3970871 and θ0 = 2π/3. 

 

TABLE III.  Quality of fitting the parameters a
2
(K) (see Ref. 8) for the ground state of the CH3OH molecule. 

 

Model L amax
2  × 108 “m– 1

 K 

 a2( n = 0, τ = 1) 

a0 + 
a1 K + a2 K

2 + a4 K
4 +  a6 K

6

1 + z1 K – K2  

 
5 

 
8.3 

K ≤ 14 
K ≠ 1, K ≠ 9 

 a2( n = 0, τ = 2) 

a0 + 
a1 K + a2 K

2 + a4 K
4 + a6 K

6

1 – K2  

 
4 

 
11 

K ≤ 14 
K ≠ 1 

 a2( n = 0, τ = 3) 

a0 + 
a1 K + a2 K

2 + a4 K
4

1 + z1 K – K2  

 
4 

 
5.9 

K ≤ 14 
K ≠ 1 

P(5) 5 1104.8  
 

 

TABLE IV. Quality of predicting the parameters a
0
(K) for 

the ground state of the CH3OH molecule with the adjustable 

parameters found by fitting with K ≤10.  

 a0(τ = 1) a(+)
0  a(–)

0  

L 

Δ amax
0  × 104 “m– 1, K ≤ 10 

5 
8 

6 
3.7 

5 
7.21 

K = 11 
exp.8

pred.
 

552.33 
552.33 

549.50 
549.50 

– 9.72 
– 9.73 

K = 12 
exp.8

pred.
 

628.92 
628.96 

629.74 
629.75 

– 10.54
– 10.57 

K = 13 
exp.8

pred.
 

712.55 
712.70 

716.69 
716.67 

– 9.49 
– 9.75 

K = 14 
exp.8

pred.
 

803.49 
803.83 

810.19 
809.93 

– 7.21 
– 7.28 

___________________ 

Note: In the prediction, the following models were used: 

Table IV shows the quality of prediction of torsional 
energies a0(K) for the ground molecular state. At the first stage 

of fitting, the experimental data were processed using the 
obtained relations for a0(K) with K ≤ 10, and at the second stage 

the obtained adjustable parameters were used for calculating 
a0(K) for 10 < K ≤ 14, and the results were compared to the 

experimental constants. And finally Table V represents the 
calculated parameters a

m
(K) (m = 0, 1, 2) with K = 15 that can 

be used for searching new absorption lines in the spectrum of the 
molecule. 

 

a0(τ = 1) = a0 + Σ
3

i=1

a
i
 K2 i / (1 + z1 K + z4 K

4); 

 

a(+)
0  = a0 + Σ

3

i=1

a
i
 K2i / (1 + Σ

3

i=1

z
i
 K2 i); 

 

a(–)
0  = [a1 sin (α K) + a2 sin (2α K) + a4 sin (4α K)]/(1 + z2 K

2). 
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TABLE V. Calculated values of the parameters a
m
(K) for the 

ground state of the CH3OH molecule with K = 15. 
 

Parameter τ = 1 τ = 2 τ = 3 

a0 , “m
– 1

 901.95 908.5 912.00 

a1 ,
 “m– 1

 0.804962 0.80480 0.80468 

a2×10
– 6, “m– 1

 – 2.6 – 1.75 – 1.6 
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