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An algorithm for optimization of the Schmidt high–transmission optical system 
according to the criterion of minimum wave aberration has been proposed in the paper, 
which ensures finding of a solution. The optimization results are discussed. 

 

The Schmidt scheme is widely used in lidar optical 
systems. Its principal peculiarity is a refractive aspherical 
plate located in the center of curvature of a reflecting 
spherical surface to make this surface parabolic. Mounting 
of a thin afocal element in the system pupil does not affect 
astigmatism and wave curvature of the given system, and 
the spherical aberration of a basic system can be 
compensated by adjustment of the spherical aberration of 
the afocal element. Therefore, one of the main merits of this 
scheme is its wide field of view.  

There are various techniques for calculation of a 
profile of the correction plate. For example, in Ref. 1 the 
ray paths for which the spherical aberration are 
compensated are assigned. The ray paths are defined by the 
ordinates of the points at which rays intersect the plane 
perpendicular to the system optical axis tangent to the 
corrector top and by the angles between the rays and the 
system axis. These paths determine the system spherical 
aberration in the angular form. In computational optics, the 
standard form of planoid surface is described by the 
equation2  
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An expression is known1 which connects a tangent of 

the angle of normal to the corrector surface G with the 
coefficients of the planoid surface equation 
 
G = 4 c
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Knowing the refracted ray angle B and assuming that the 
angle between the system axis and the incident ray equals 
zero, in accordance with Eq. (32) from Ref. 1, we have 
 
G = – N sin(B)/[ N

1
 – N cos(B)] , (3) 

 
where N is the refractive index before the planoid surface, 
N

1
 is the refractive index behind the planoid surface. Using 

Eqs. (2) and (3) and the ordinates of the points of 
intersection of the rays and the corrector surface y

i
, we 

obtain the system of equations 
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where m is the number of rays. 

 

If the spherical aberration is corrected for a nearly–
parallel beam, the ordinates of the points of intersection 
of rays with the plane tangent to the corrector top and 
that of intersection of rays with the corrector surface can 
be considered equal. Then, having solved system (4), we 
obtain the coefficients of equation (1). However, in 
correcting large spherical aberration the ordinates of the 
points of intersection of rays with the corrector surface 
cannot be considered known. In this case the system of 
linear equations (4) is solved by the successive 
approximation method, and the ordinates of the points of 
intersection of rays with the plane tangent to the 
corrector top are considered as initial coordinates. As was 
noted in Ref. 1, the approximation process converged 
sufficiently fast.  

Note the following shortcomings of this and similar 
algorithms. First, the form of the surface equation is 
assumed to be known, i.e., a certain number of the 
planoid equation coefficients are prescribed. And since it 
is not known a priory how many coefficients are required 
for correction, their number should be adjusted in the 
interactive regime. Second, as it is shown below, the 
values of the high–order coefficients of planoid equation 
may be as small as 10–99 and even smaller, what poses 
certain computational difficulties. Third, sufficiently 
large number of iterations is needed for inadequate initial 
approximation of the points of intersection of rays with 
the planoid surface.  

The proposed method is based on minimization of the 
wave aberration calculated on the surface of the corrector 
by which the planoid surface is meant. In this case the 
wave front of a point monochromatic source can be 
represented as a surface of equal eikonal,3 and the wave 
aberration is found as a difference between the wave 
fronts of an object and its aberrationless image on the 
corrector surface.  

Eikonal of wave created by the point monochromatic 
source at a point is 

 

F = ∑
i

 L
i
 N

i
 , (5) 

 
where N

i
 is the refractive index of medium i through 

which the wave passes a path of length L
i
.  

So, to satisfy the Fermat principle, the correction 
surface must convert the source eikonal into the image 
eikonal.  

Using the standard program for calculation of the 
ray paths through an optical system, the object eikonal 
F(x, y, z) and the image eikonal F

m
(x, y, z) are found, 
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where in the general case x, y, and z are the curvilinear 
coordinates of the points on the corrector surface. The 
eikonal F

0
 corresponding to the wave aberration being 

compensated can be written in the form 
 

F
0
 = F

m
 – F. (6) 

 
Phase modulation introduced by the corrector in case 

of normal light incidence has the form 
 

F(x, y, z) = d (N – 1), (7) 
 
where d is the sag value. Therefore, to compensate for the 
wave aberration, the sag at the given point must be 
changed by the value 
 
d = F

0
/(N – 1). (8) 

 
In the general case the optical path length d with 

the sign is added.  
For large values of F

0
 the necessity of the iteration 

process stems from the error of translation of the surface 
points.  

Calculation of the Schmidt high–transmission 
optical system was done in accordance with the proposed 
procedure. At the beginning of calculation, the system 
consisted of a correction plate 10 mm thick located in the 
curvature center of a spherical mirror with a curvature 
radius of 4000 mm. Input aperture of the system was 
1000 mm. The optimization was carried out for an object 
located at infinity. 

The calculated eikonals on the corrector surface were 
approximated by cubic splines. In accordance with the 
above–described procedure, the correction planoid profile 
on the assigned surface was calculated. After that the 
residual wave aberration was estimated by direct 
calculation of ray paths. 

 
 

FIG. 1. Correction planoid profile of the Schmidt system: 
1) profile of the corrector located in the center of a 
spherical mirror; 2) profile of the corrector displaced at a 
distance of 7.5 mm. 

 
The correction required to calculate three ray path 

iterations. The residual wave aberration and the corrector 
profile are shown in Figs. 2a and 1 (curve 1), respectively. 
The correction surface equation has the form 

 
z = – 7.65 10– 21 y4. (9) 
 

The wave aberration was 0.09 μm at the aperture edge 
and smaller than 0.002 μm at the aperture smaller than 
400 mm. The calculated wavelength was λ = 0.6328. The 
error in determining the surface profile was 0.17 μm or 
≈ λ/4 at the aperture edge and smaller than 0.004 μm or 
≈ λ/160 at the aperture smaller than 400 mm. 

 
FIG. 2. The residual wave aberration of the Schmidt 
system for the correctors shown in Fig. 1: a) profile 1 and 
b) profile 2. 
 

The corrector with such a surface profile is not 
optimal from the viewpoint of its production technology. 
In this sense, the corrector is of interest with the 
correction surface profile and the residual wave aberration 
shown in Figs. 1 (curve 2) and 2b, respectively. It was 
obtained with mirror focal plane displacement 
(defocusing) of 7.5 mm. 

The residual wave aberration in all cases did not 
exceed 0.09 μm at the aperture edge and 0.005 μm on the 
aperture smaller than 400 mm. The minimum residual 
aberration was observed for the corrector profile shown in 
Fig. 2b: at the aperture edge it did not exceed 0.06 μm, 
i.e., the error in determining the surface profile was no 
more than λ/6, and for aperture radius smaller than 
480 mm the residual aberration did not exceed 0.0038 μm, 
i.e., the error in determining the surface profile was no 
more than λ/167. 

Sharply oscillating increase in the error at the 
aperture edge can be explained by the edge effects of the 
computational process. These effects should most likely be 
attributed to errors in calculating the edge ray paths, and 
more reliable results can be obtained by implementation 
of the proposed algorithm on larger aperture of the order 
of 1.3 of the inner diameter to eliminate the edge points.  

In lidar optics the diffraction–quality systems, i.e., 
the systems forming diffraction image of an object, are 
used. For systems of this type the total tolerable 
deformation of wave front W

max
 may not exceed λ/4 in 

accordance with the Rayleigh criterion. This criterion is 
successfully applied in the case in which the wave 
aberration is smooth.4 

There are three optical surfaces in the Schmidt system: 
two refracting surfaces and one reflecting surface; therefore, 
the correction surface must satisfy λ/12 criterion. Obtained 
values of the sag for the planoid surface shown in Fig. 1 
(curve 2) were approximated by the least–squares technique. 
The coefficients of polynomial in the form of Eq. (1) and 
corresponding error in determining the corrector profile are 
presented in Table I. 
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TABLE I. Error in determining the correction surface profile Δ d as a function of the degree of approximating polynomial ( 1). 
 

Degree of polynomial Planoid equation coefficients 

1 1.78 E – 02 1.52 E – 02 1.24 E – 02 5.17 E – 02 1.29 E – 02 4.14 E – 002 

2 1.79 E – 09 1.79 E – 09 1.80 E – 09 1.78 E – 09 1.80 E – 09 1.78 E – 009 

3 7.40 E – 21 – 7.53 E –
 21

– 8.10 E –
 21

– 6.09 E –
 21

– 9.26 E –
 21 

– 5.72 E –
 021 

4 6.98 E – 34 1.28 E – 33 2.06 E – 32 – 4.88 E –
 32 

9.13 E – 32 – 1.03 E –
 031 

5  – 1.13 E –
 44

– 2.92 E –
 43 

8.81 E – 43 – 2.21 E –
 42 

3.23 E – 042 

6  2.17 E – 56 2.01 E – 54 – 8.71 E –
 54 

2.95 E – 53 – 5.74 E –
 053 

7  – 6.78 E –
 66 

4.73 E – 65 – 2.30 E –
 64 

6.14 E – 064 

8   8.86 E – 78 – 1.33 E –
 76 

1.03 E – 75 – 4.03 E –
 075 

9    1.50 E – 88 – 2.50 E –
 87 

1.58 E – 086 

10     2.49 E – 99 – 3.41 E –
 098 

11      3.10 E – 110 

Δ d, μm 3.98 E – 01 4.08 E – 01 2.96 E – 01 2.08 E – 01 1.16 E – 01 7.36 E – 002 

W
max

 λ/4.8 λ/4.8 λ/6 λ/9 λ/17 λ/26 

 

As one can see from Table I, the Rayleigh criterion is 
satisfied when ten calculated coefficients are used for 
approximation of the corrector surface. In this case the error 
due to the corrector surface does not exceed λ/17, and the 
imposed requirements are wholly satisfied. The corresponding 
equation of the correction plate is written in the form 

 

z = 1.29⋅10– 2y2
 + 1.80⋅10– 9y4

 – 9.26⋅10– 21
 y6

 + 9.13⋅10– 32
 y8

 – 
 

– 2.21⋅10– 42 y10 + 2.95⋅10– 53 y12 – 2.30⋅10– 64 y14 + 
 

+ 1.03⋅10– 75y16 – 2.50⋅10– 87y18
 + 2.49⋅10– 99y20.  (10) 

 

Choice of the wave aberration as a parameter to be 
optimized yields higher quality, simpler procedure of 
calculation of the correction optical system, essentially 
smaller computation time, and less stringent requirements 
for computer resources. The fact that application of the 
criterion of wave aberration minimum more efficiently 
optimizes an optical system having small wave aberration 
was noted already in Ref. 5. As calculation of the 
Schmidt high–transmission optical system showed, the 
method is also efficient for large wave aberration.  

As distinct from the procedure of finding the 
equation of aspherical surface described in Ref. 5, the 
 

number of the coefficients was not assigned, and 
calculation was carried out for the corrector surface 
described by splines. Therefore, the procedure of 
adjustment of the number of coefficients was excluded, 
what allowed unattended system optimization process. 

Our calculations testify the feasibility of the given 
method for optimization of the Schmidt high–
transmission optical systems having large aberrations. 
Work is underway on calculation and experimental test of 
the method for a wider class of optical systems. 
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