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Propagation of profiled light beams through a nonlinear or turbulent medium is 
investigated in the approximation of optically thin layer. Regions have been identified 
where transfer to the profiled beams causes a decrease of their radius in the receiving 
plane. The standard deviation of the beam center of gravity has been derived as a 
function of the correlation length for the density fluctuations in the turbulent layer of 
a medium. 

 

INTRODUCTION 

 
Profiling of optical beams is well known to be a 

method of control of the beam parameters, for example, of 
compensation for the nonlinear beam distortions. The 
profiled beams were not studied in detail for a long time, 
apparently, because of sophisticated practical realization of 
their amplitude profile in experiments. However, in recent 
years several techniques have been proposed to create a 
desired pulse shape and beam profile in real systems,1–5 
including the control of the optical beam wave front.4 
Therefore, interest in an analysis of mechanisms of non-
Gaussian beam propagation has increased.6–11 Various 
problems of self–action of profiled optical beams were also 
considered analytically and by numerical modeling in our 
previous papers (see Refs. 7 and 12–22), where it was 
shown in particular that the profiled beams undergo much 
less distortions as compared with the Gaussian beams. Note 
that numerical experiments were carried out with the use of 
the difference schemes constructed and substantiated by us 
and outlined, for example, in Ref. 23. 

Two problems that have not yet been discussed are 
considered in the present paper: 1) optimization of the 
initial radius of the profiled beam and 2) its distortions 
during propagation through a layer of a turbulent 
medium.19 It should be noted that the efficiency of 
optimization of the Gaussian beam radius as applied to the 
problems of light energy transfer was discussed in Refs. 24 
and 25. 

 

1. ON THE EFFICIENCY OF OPTIMIZATION OF THE 

PROFILED BEAM RADIUS 

 

To analyze the distortions of optical beams that have 
passed through a thin nonlinear layer, we make use of the 
formulas derived in Ref. 26 for calculation of the position of 
the beam center of gravity Xc and beam radii ax and ay  
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The formula for ay is analogous to Eq. (1) with 

substitution of ∂/∂x by ∂/∂y. Here z is the beam 

propagation coordinate normalized by ld = ka2/2; k is the 

wave number; a is the initial beam radius; f(x, y) is the 
beam profile upon entering a nonlinear medium; S(x, y) 
is the beam phase after it has passed through a nonlinear 
layer; S = Sc + Snl, Snl is the additional run–on of the 

phase upon exiting the medium; Sc is the phase of the 

beam in the cross section z = 0; Q is the f distribution 
norm; x, y are the transverse coordinates normalized by a. 
In the case of axial symmetry it is expedient to transfer 
to the radius r2 = x2 + y2. 

Upon entering the nonlinear layer, the light has 
either hyper-Gaussian or hyperhollow profile, 
respectively: 

 

fG = exp { – b ( xm + ym)} , (3) 

 

fh = ( xm + ym) fG . (4) 

 
Note that b = 1 corresponds to the amplitude profile of a 
reference beam subsequently used to compare the optical 
beam parameters. 

Substituting the expressions for fG and fh into 

Eq. (1), it is not difficult to derive the following 
dependence for the position of the center of gravity of the 
optical beam with the plane phase front in the cross 
section z = 0 that has passed through the layer of a 
moving medium with thermal nonlinearity  

 

Xc G( z) = 
θnl z

23  
b2/ m

I( m) ,  Xc h( z) = 
z θnl

28  
b2/ m

I( m) χ( m) , (5) 

where θnl is the excess beam divergence,  

 

I( m) = Γ2(1 + 1/ m) ,  χ( m) = 
m(2 + 2/ m)(3 + 2/ m)

1 + 2/ m  , (6) 

 
Γ(x) is the gamma-function. The functions I(m) and χ(m) 
are tabulated in Table I (the function δ(m) is described 
below). One can see directly from Table I that the 
displacements of hyperhollow beams with m being equal 
to 2 and 4 are smaller by 3 and 1.5 times than the 
displacements of the corresponding Gaussian beams. It is 
essential that the position of the center of gravity as a 
function of b obeys the same law for both fG and fh. If 

b > 1, then with increase of m the parameter b2/m 
decreases. If b < 1, the reverse dependence is observed. 
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Therefore, a choice of the optimal profile depends directly 
on the initial beam width (for a given b, the optimal m 
can be indicated). Note that for the constant initial beam 
power the parameter b determines the peak beam 
intensity. 
 
TABLE I. Functions I(m), χ(m), and δG(m) versus the 

parameter m. 
  

m 2 4 6 8 10 
I(m)  0.7854 0.9064 0.93 0.9417 0.95135

χ(m)/25  0.375 0.728 1.09 1.46 1.772 

δG(m)⋅102  7.46 2.543 1.444 1.1074 0.9011

 
As distinct from the displacement of the beam center 

of gravity for the square of the beam width 
 

a2( z) = ax
2 + ay

2 – X c
2 , (7) 

 
an optimal value of b exists for which the width is 
minimum. So, for propagation of the optical beam with 
initially flat–top profile is accompanied by the change of 
the square of the width by the law 
 

a2(z) = 
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Note that a2

x and a2
y make the same contribution to the first 

two terms in Eq. (8). 
It is clear that for every set of the parameters m, z, 

and θnl the optimal value of b2/m exists for which a2(z) 

reduces to a minimum. This value is determined by solving 

the cubic equation for ξ = b2/m: 
 

– 
c1

ξ2 + c2 + 2 c3 ξ = 0. (9) 

 

For brevity, in Eq. (9) the coefficients of b2/m from 
Eq. (8) are denoted by c

i, i = 1, 2, 3, respectively. It is 

interesting to note that even in the case of optical beam 
propagation through a linear medium (θnl = c3 = 0), the 

distribution with the parameter  

 

(bopt)G = ( )24–4/m Ã(1 + 3/m)
3 m Ã(2 – 1/m) z–m/2 = ϕG(m) z–m/2 (10) 

 
other than unity is optimal.  

It follows from Eq. (10) that it is necessary to transfer 
to wider beams for fixed m as z increases. The coefficient 
ϕG(m) as a function of the parameter m is shown in Fig. 1 

by solid curve. An analysis of Fig. 1 and expression (10) 
shows that when z < 1 (the path length is smaller than the 
diffraction length of the reference beam) the same value of 
b can be optimal for different m. For z > 1 such a situation 
is never realized.  
 

 
FIG. 1. Functions ϕG(m) (solid curve), ξG(m) (dashed 

curve), and z1 and z2 (dot–dash curves 1 and 2, 

respectively) versus the parameter m for hyper–Gaussian 
beams. 

 

The choice of (bopt)G (i.e., initial beam width) leads to 

the following value of the optical beam radius at the 
receiver: 

 

a2(z, bopt) = z⎝
⎛

⎠
⎞m

3 
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Γ2(1 + 1/ m)

1/2

 = zξ( m). (11) 

 
The ξ(m) dependence is depicted in Fig. 1 by dashed curve.  

As is clear from Fig. 1, the minimum beam width in 
the cross section z of a linear medium increases with m. 
Nevertheless, with optimal choice of the parameter b the 
beam width at the receiver decreases as compared with its 
value for b = 1 by a factor of 

 

η = 
1
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2  + 1/ bopt
2 ) = 

1
2⎝
⎛

⎠
⎞ϕG

2( m)

zm  + 
zm

ϕG
2( m)

 . (12) 

 
Therefore, for flat–top beams the requirements for a choice 
of the optical beam initial radius become more stringent. It 
is interesting to compare the widths of the Gaussian beam 
(b = 1) and profiled one for optimal b. It is easy shown that 
their ratio is equal to 

 
ηG = 0.5 (1 + z2)/ z ξ( m) . (13) 

 
So, in the propagation path segment  

 

ξ(m) – ξ2( m) – 1 = z1 ≤ z ≤ z2 = ξ( m) + ξ2( m) – 1 (14) 

 
there is no point in going to hyper–Gaussian beams (η ≤ 1) 
with plane initial wave front. 

For the Gaussian beam, η equals unity in a single 
point. As m increases, the width of this zone also increases 
and runs into the values 0.3–3.3 for the hyper–Gaussian 
beam with m = 10. Therefore, in a linear medium an optical 
beam with initially flat–top amplitude distribution and 
plane phase front should be used in either the near zone 
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(the path length ≤ (0.15–0.28) ka2) or the far zone (the 
path length ≥ (0.9–1.63) ka2), respectively, as m increases. 
All mentioned above is illustrated by Fig. 1, where the 
dependence of z1 and z2 on the parameter m is shown by 

dot–dash curves. For path lengths between curves 1 and 2 
transfer to a flat–top beam does not decrease the optical 
beam radius as compared with the Gaussian beam radius. 

In more general case (c3 ≠ 0) an analysis of Eq. (9) in 

detail is difficult because we must solve the cubic equation. 
However, the most important dependence of ξopt on the 

excess divergence, propagation path length, and parameter 
m can be obtained. To this end, Eq. (9) is reduced to the 
form 

 

δG( m) θnl
2  z η = 1/η2 – 1, (15) 

 

by introducing new variable η = ξ/ξopt l, where ξopt l is the 

optimal value of ξ in the case of propagation through a 
linear medium, 
 

δG(m)= Γ(1+3/m)/3 [Γ3(1+1/m) Γ3/2(2–1/m) m3/2 24/m]–1
 × 

 

×[ 
24/m

32/m –1 + m Γ(2 – 1/ m) Γ(1 + 1/m) 24/m/33 – 1/m]. (16) 

 

The function δG(m) is tabulated in Table I. 

Using the graphic approach to solve Eq. (15), it is not 
difficult to see that when a beam passes through a thin 
nonlinear layer, the optimal value of η is smaller than 
unity, and η is closer to zero, the larger is the parameter 
zθnl

2 δG(m). It can be easy seen that for sufficiently large 

values of this parameter (when η Ü 1), its optimal value 
ηopt is equal to 1/(θ2/3

nl z1/3δ1/3
G (m)). 

Propagation of the hollow beams was analyzed in the 
same manner. 

 
2. AMPLITUDE COMPENSATION FOR THE RANDOM 

PHASE DISTORTIONS OF OPTICAL BEAMS 

 

One of the most complex problems of nonlinear 
adaptive optics is the problem of compensation for the 
distortions of light beams propagating through a turbulent 
medium. An analysis of the effect of the initial beam profile 
on the beam power characteristics in the receiver cross 
section was not practically carried out in the literature 
devoted to this problem. Such an investigation in the case 
of optical beam propagation through a thin layer of a 
turbulent medium is made below (see also Ref. 19). Note 
first that compensation for the beam distortions by a 
flexible mirror controlling the lowest–order aberration 
modes is feasible when the correlation length and the beam 
radius are approximately equal. As their ratio decreases, the 
number of the controllable modes of a mirror increases 
quickly. Therefore, it is expedient to optimize the other 
beam parameters, for example, its profile. For this purpose 
calculations of the position of the beam center of gravity 
were done by formula (1) for various initial amplitude 
distributions from the class 

 

f( x, y) = ((1 – c) + c( xm + ym)) exp [–2( xm + ym)] (17) 
 

(the number 2 in the exponent is for comforable 
calculations) when the beam passes through the layer of a 
turbulent medium and receives the random run–on of the 
phase S

ϕ
(x, y) upon exiting the medium. Let S

ϕ
 be the 

Gaussian random variable with the correlation function 
 

S
ϕ
(x, y) S

ϕ
(x′, y′) = σ2 exp [– ((x – x′)2

 + (y – y′)2)/ρc
2], (18) 

 

where ρc is the correlation length normalized by a; σ is the 

fluctuation variance with zero mean S
–

ϕ
 = 0 (the bar atop 

denotes averaging). In Eq. (17), c is the coefficient varying 
from 0 up to 1. The calculated results are shown in Figs. 2 
and 3 as the dependence of Jc = X2

c(z) on the parameter ρc 

in the cross section z = 1 with σ = 1. 
The Jc dependence for the hyper–Gaussian beams 

(c = 0) is shown in Fig. 2a. The number adjacent to curves 
indicate the values of the parameter m. Four characteristic 
regions can be identified in Fig. 2a which are practically 
the same for the examined beam profiles. So, as ρc decreases 

from 6 to 4, the standard deviation of the position of the 
beam center increases. If ρc is within the interval 2 – 4, Jc 

does not change. Note that profiling leads to decrease in Jc 

by a factor of 1.5 (for m = 10) as compared with the 
displacement of the Gaussian beam center. 

 

 

 
FIG. 2. Variances of the square of position of the center 
of the hyper-Gaussian (a) and hyperhollow (b) beams as 
functions of the correlation length.  

 
In the third region Jc increases as ρc decreases. 

Moreover, the position of the left boundary of the region 
and minimum value of Jc are determined by the beam 

profile. It is important that as m increases, the amplitude of 
the displacement maximum is halved and is shifted towards 
larger ρc for m = 10.  The case with ρc < 1 is of great 

interest for practice. It is essential that for m = 10 the 
standard deviation of the beam center in maximum is 
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smaller by a factor of 2.5 than the corresponding value for 
the Gaussian beam. 

In the last region Jc decreases when ρc tends to zero. 

This fact is connected with the beam spreading at the 
receiver and its smearing due to small fluctuations. 

In the case of the hyperhollow beams (c = 1) 
wandering of the beam center of gravity (see Fig. 2b) 
differs from the above–mentioned wandering of flat–top 
beams. First of all it should be noted that the region with 
flat–topped dependence of Jc on ρc is absent for the hollow 

beams. Moreover, for ρc > 3 the standard deviation of the 

center of the hyperhollow beam with m = 10 is 
approximately halved in comparison with deviation of the 
hollow beam with m = 2. As distinct from the flat–top 
beams, in the given case the values of Jc coincide for ρc ≥ 4 

when m ≤ 6. One more distinct feature is the dependence of 
Jc maximum on ρc. As m increases, this maximum is shifted 

towards smaller ρc, and its amplitude increases. Note that 

when m = 10, the maximum variance of the beam center 
displacement is greater by a factor of 2.3 than the 
corresponding value attained for the hollow beam with 
m = 2. For ρc ≥ 0.5 the hyperhollow beam with m = 10 

must be used without question. Emphasize that the 
maximum J

c of the hollow beam is shifted in the region 

with the correlation length larger than the beam radius that 
also could give practical advantages when the hollow beams 
are used. 

 

 
 

 
 

FIG. 3. The same as in Fig. 2. c = 0.835 (a) and 0.91 (b). 
 

Analogous calculations were done for c = 0.1, 0.2, 0.5, 
0.8, and 0.9. The typical dependence of the standard 
deviation of the beam center of gravity is shown in Figs. 3a 
and 3b, for c = 0.835 and 0.91, respectively. As follows 
from the result of calculations, there is no point in the use 

of beams with c ≤ 4, because for practically important case 
ρc < 1 Jc is not smaller than that in the cases mentioned 

above. Beams with c ∼ 0.8 are promising for the given 
application. However, the specific value of the parameter c 
at which the smallest value of Jc is observed, depends on m 

(see Fig. 3). 
Thus, profiling of a light beam makes it possible to 

decrease essentially the variance of the fluctuations of the 
optical beam center of gravity. 
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