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The algorithms are presented which allow one to enhance the speed of spectral–
correlation processing of stationary analytical signals, for purposes of acoustic 
sounding of the atmosphere. 

 
Nowadays in different branches of science and 

technology the calculation techniques based on the complex 
representation of signals whose real and imaginary parts are 
connected by Hilbert transform1–3 are used. The analytical 
signals (AS) are expected to be applied successfully to 
sodars also. In this case, in contrast to traditional real 
representation of the acoustic information4 a possibility 
appears of correct studying the amplitude and phase–
frequency modulation of signals received by sodar, that will 
allow sounding to be more informative and reliable. 
Together with the above–mentioned new possibilities, the 
ordinary spectral analysis, whose advantages are discussed 
in Ref. 4, also will not lose its significance for the 
measurement of wind velocity with a sodar. When 
developing this technique the enhancement of the processing 
speed is an urgent problem. One of the versions is proposed 
below for solution of this problem for the periodogram and 
correlation methods of obtaining spectral information. It 
stems from the fact that the discrete Fourier transform 
(DFT) of AS on the basis of Nyquist interval differs from 
zero only for the positive frequencies.1,2 

The acoustic signal reflected from the atmospheric 
inhomogeneities is assumed to be converted by a sodar 
antenna system into the electrical one, amplified, subjected 
to the analog filtration, digitized, quantized, and then it 
arrives at an input of preliminary processing block, where 
AS z(nΔt) is formed with the help of corresponding digital 
filters with the finite pulse characteristic.1 Since useful 
acoustic information is sufficiently narrow–band,4 then to 
decrease its volume and to improve the measurement 
effectiveness, it is appropriate to choose the digitization 
frequency f

d
 proceeding from the known conditions of 

subdigitization, i.e. connecting f
d
 with the necessary width 

of frequency range of the spectral measurements only.3 
Naturally, in this case the requirements to the degree of the 
amplitude–frequency response roll–of, of the input analog 
band–pass filter, outside its bandwidth are increased. 

Further the real and imaginary components of z(nΔt) 
must arrive at the input of the fast Fourier transform (FFT) 
processor which calculates DFT of a sample being analyzed: 

 

Z( )k
N Δ t

 = ∑
n = 0

N – 1

  z(n Δ t) exp( – j2π k n/N) , (1) 

 

where k = 0, 1, ..., N – 1; N is the number of readouts, 
Δt = 1/f

d
 is the digitization interval. Then the readouts of a 

sampled energy spectrum (periodogram) are formed: 
 

G( k) = (Δ t/N) |Z(k)|2, (2) 
 

from which the wind velocity is determined in the 
atmospheric volume gated.4 

However, the use of a standard FFT processor in the 
considered case is characterized by a nonoptimal 
employment of the algorithm because Z(k) are calculated 
for the negative frequencies, i.e. k = N/2, 
N/2 + 1, ..., N – 1, where DFT of AS obviously equals 
to zero.1,2 So, the calculation of DFT for a single AS 
realization is excessive. It can be avoided by processing 
two realizations z

1
(nΔt) and z

2
(nΔt) simultaneously. To 

do this, it is sufficient to perform a preliminary 
heterodyning of the spectrum of one of the realizations in 
the negative frequency region at the value f

het
 = f

d
/2. 

For such a choice of f
het

 the overlapping of spectra will 

not be observed due to linearity of DFT, that will allow 
us to separate the spectra in future. As it follows from 
properties of DFT,2 the spectrum shift by the value f

het
 

for the complex signals is achieved through multiplication 
of the initial sample by a complex exponent 
ω(nΔt) = exp(– j 2 π f

het
 n Δ t). For the required 

frequency f
het

 = f
d
/2, ω(n Δ t) = exp(– j π n) = (– 1)n. 

Hence, the necessary heterodyning is realized by simply 
inverting the sign of the every second reading, for 
example, the sample z

2
(nΔt). And finally the sum 

 

z(n Δ t) = z
1
(n Δ t) + (– 1)n z

2
(n Δ t),  n = 0, 1, ... , N – 1, (3) 

 

arrives at the FFT input, moreover, the complex sequence 
z(nΔt) is not a realization of AS because its spectrum is 
extended to the negative frequencies too. 

After calculations made using Eq. (2), retrieval of the 
energy spectra of the separate realizations is carried out 
 

G
1
(k) = G(k),  G

2
(k) = G(k + N/2),  k = 0, 1, ... , N/2 – 1. 

 

Thus, simultaneous spectral processing of two sodar 
signals keeping the same volume of the initial input data 
for FFT in N complex readouts becomes possible. In this 
case the additional time required for computations by 
formula (3) are a small portion of the volume of 
calculational operations needed for the calculation of 
DFT (1). Therefore, in this case one can say about 
approximately twofold enhancement of the speed of the 
response as compared with the successive mode of the 
spectral processing. 

In the correlation technique of calculation of energy 
spectra1–3 the autocorrelation function of the initial 
sample is determined first as 
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B( m) = 
1
N ∑

n = 0

N – m – 1

   z*(n) z(n + m),   (4) 

 

where m = 0, 1,..., M – 1, M ≤ N, asterisk denotes the 
complex conjugation, B(m) satisfies a condition of Hermite 
symmetry, i.e. B(m) = B*(–m), and its connection with the 
continuous sampling spectrum G(f) is determined as2: 
 

G( f) = Δ t ∑
n = – ( M – 1)

M – 1

   B(m) exp(– j2π f m Δ t), 

–
 
f
d
/2 ≤ f < f

d
/2. (5) 

 

Then it can be shown that calculation by Eq. (5) with 
the standard FFT processor with the basis 2 is reduced to an 
addition of necessary odd number of the zero elements to B(m) 
and forming of the autocorrelation sequence Hermite–
symmetric about m = L/2 with the length of L readings, i.e. 
 

G(k/L Δ t) = Δ t ∑
m = 0

L – 1

 B( m) exp(– j2π k m / L), (6) 

 

where k = 0, 1, ... , L – 1;  
 

B(m) = {B(m) m = 0, 1, ... , M – 1,
0 m = M, M + 1, ... , L/2,   

 

B(L – m) = B*(m), m = 1, 2, ..., L/2 – 1. Hereinafter 
L ≥ 2M – 1 is the nearest integer equal to 2 in a certain 
power. Moreover, the presented technique of calculation of 
the sampling spectrum of AS is more excessive as compared 
to the periodogram one. Here the three quarters of values at 
the FFT output are zero. One of the reasons was considered 
above, another reason consists in the fact that G(k/L Δ t) is 
purely real function. 

To remove the mentioned excess, let us use the obvious 
relation following from the linearity of DFT: 
 

DFT {x(n) + j y(n)} = DFT {x(n)} + j DFT {y(n)} . 
 

Thus, the real DFT X(k), Y(k) of the Hermite–symmetric 
sequences x(n), y(n) are easily separated at the FFT 
processor output. 

Taking into account the above we present the 
algorithm for calculating the AS sampling energy spectra 
from the M–points autocorrelation functions B

1
(m), B

2
(m), 

B
3
(m), B

4
(m), m = 0, 1, ..., M – 1 calculated beforehand: 

Step 1. To form two L–point Hermite–symmetric 
sequences 
 

R
1
(m) = 

⎩
⎨
⎧B1

(m) + (– 1)m B
2
(m), m = 0, 1, ... , M – 1

0, m = M, M + 1, ... , L/2;
 

 

R
2
(m) =

⎩
⎨
⎧B3

(m) + (– 1)m B
4
(m), m = 0, 1, ... , M – 1

0, m = M, M + 1, ... , L/2;
 

 

R
1
(L – m) = R*

1
(m),  R

2
(L – m) = R*

2
(m), 

 

m = 1, 2, ... , L/2 – 1. 
 
Step 2. To form a new L–point (but not Hermite–

symmetric) complex sequence B(m), m = 0, 1, ... , L – 1: 
 

Re B(m) = Re R
1
(m) – Im R

2
(m); 

Im B(m)
 
= Im R

1
(m) + Re R

2
(m). 

 

Step 3. To calculate the L–point FFT with the 
coefficient Δt of the sequence B(m) (i.e. to make use of 
Eq. (6)). 

Step 4. To retrieve separate sampling energy spectra 
for k = 0, 1, ... , L/2 – 1: 

 

G
1
(k) = Re G(k),  G

2
(k) = Re G(k + L/2); 

G
3
(k) =

 
Im G(k),  G

4
(k) = Im G(k + L/2). 

 

This algorithm will allow simultaneous spectral 
processing of all four sodar channels (three slant and one 
vertical) to be performed with a single FFT processor. As for 
the periodogram technique, an additional volume of 
calculations according to steps 1, 2 which is needed for above 
noted possibility is rather small as compared with the volume 
of the calculational operations for the basic relation (6). 

Let us consider the version when it is necessary to 
obtain the thinned out spectral readings for the same 
physical resolution ensured by the length of the correlation 
sequence 2MΔt. In the acoustic sounding it corresponds to 
measurement of the wind velocity by means of the first 
rough determination of maximum of the sampling spectrum 
with its further refinement by different approximations.4 

Let us turn to the initial relation (5). As compared 
with the classical version (6), we will increase a step of 
calculation of the frequency spectrum twice. (In so doing 
the obtained spectral resolution coincides with the 
periodogram resolution (1) in the particular case M = N, 
L = 2N). The sequence B(m) is added by L – 2M + 1 zeros 
on the left and on the right. Then 

 

G(2 k/L Δ t) = Δ t ∑
m = – L/2

L/2 – 1

   B(m) exp(– j4π k m/L) = 

 

= Δt 
⎩⎪
⎨
⎪⎧

∑
m=–L/2

– 1

 B(m)

 

 

exp(– j4π k m/L) + 

 

+ 
⎭⎪
⎬
⎪⎫

∑
m=0

L/2–1

 B(m)

 

 

exp(– j4π k m/L) . 

 

Having substituted n = L/2 + m in the first sum and 
allowing for B(m) = B*(–m), and exp (j 2 π k) = 1, we obtain 
 

G(2 k/L Δ t)=Δ t ∑
m = 0

L/2 – 1

 [B(m)+B*(L/2– m)] exp(–j4π km/L). 

 

Since B(m) = 0, m ≥ M, and B(L/2 – m) = 0, m = 0, 1, ..., 
L/2 – M, then using the Hermite symmetry of the 
expression in the brackets about m = L/4 we finally obtain 
 

G[ ]k
L/2 Δ t

 = Δ t ∑
m = 0

L/2 – 1

 P( m) exp{– j2π k m/(L/2)}, (7) 

 

where k = 0, 1, ... , L/2 – 1, 
 

P(m)={B(m), m = 0, 1, ... , L/2–M
B(m)+B*(L/2–m), m = L/2–M+1, ... , L/4,  (8) 

P(L/2 – m) = P*( m),  m = 1, 2, ... , L/4 – 1. 
 

The spectral readouts sought are calculated by the 
L/2–point DFT with the use of only half of the correlation 
interval. Moreover, the 2M – L/2 – 1 readouts of B(m) 
from the unused half are superposed on this interval; P(m) 
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is the circular autocorrelation function1,2 of the initial 
complex sequence corresponding to G(2 k/L Δ t). 

For the present case it is not difficult to modify the 
above described algorithm of simultaneous calculation of the 
four spectra sampled B

1
(m), B

2
(m), B

3
(m), B

4
(m),  

m = 0, 1, ..., M – 1. It is first necessary to form an L/2–
point Hermite–symmetric circular autocorrelation sequences 
P

1
(m), P

2
(m), P

3
(m), P

4
(m) on the basis of Eq. (8), then 

to form the L/2–point sequences 
 

R
1
(m) = P

1
(m) + (– 1)m P

2
(m) , m = 0, 1, ... , L/4; 

R
2
(m) = P

3
(m) + (– 1)m P

4
(m) , m = 0, 1, ... , L/4; 

R
1
(L/2 – m) = R*

1
(m),  R

2
(L/2 – m) = R*

2
(m),  

m = 1, 2, ... , L/4 – 1. 
 

Then, the steps 2–4 are repeated with a replacement of L 
by L/2. 

When processing long samples of real signals the 
technique of calculation of their autocorrelation functions 
with FFT1,2 is used. As a matter of fact, in our case this 
technique is reduced to inversion of Eq. (6), where 
G(k/L Δ t) is determined by the periodogram method. The 
use of relation (7) is impermissible because it finally results 
in a circular correlation (8). 

Taking into account the above material, we present the 
algorithm of simultaneous calculation of the autocorrelation 
functions (4) for two AS realizations z

1
(nΔt) and z

2
(nΔt), 

n = 0, 1,..., N – 1 for the particular case L = 2N: 
Step 1. Using Eq. (3), we form one complex 

(nonanalytical) sequence z(nΔt) and complete it by N zeros. 
Step 2. We calculate a 2N–point FFT Z(k),  

k = 0, 1, ...,2N – 1 of the sequence z(nΔt). 
Step 3. We calculate G(k) = ⏐Z(k)⏐2/N, k = 0, 1, ..., 

2N – 1. (If the spectral readouts are needed then G(k) must 
be multiplied by Δt). 

Step 4. We form the 2N–point complex sequence S(k) 
 

Re S(k) = G(k),  k = 0, 1, ... , N – 1, 

Im S(k) = G(k + N),  k = 0, 1, ... , N – 1, 

Re S(k) = Im S(k) = 0,  k = N, N + 1, ... , 2 N – 1. 

Step 5. We calculate the 2N–point inverse FFT 
 

s(m) = 
1

2 N ∑
k = 0

2 N – 1

 S( k) exp( j2π k m /2 N) . 

 
Step 6. We reconstruct the readouts of the 

autocorrelation functions B
1
(m), B

2
(m), m = 1, 2, ..., N – 1. 

 
Re B

1
(m) = [Re s(m) + Re s(2 N – m)] / 2; 

 

Im B
1
(m) = [Im s(m) – Im s(2 N – m)] / 2; 

 

Re B
2
(m) = [Im s(m) + Im s(2 N – m)] / 2; 

 

Im B
2
(m) = [Re s(2 N – m) – Re s(m)] / 2; 

 

Re B
1
(0) = Re s(0),  Re B

2
(0) = Im s(0). 

 
This paper presents the algorithms allowing one to 

enhance the speed of the spectral–correlation processing 
of the stationary AS. Moreover, we did not touch the 
problems of the use of temporal, correlation, and spectral 
windows, which are well discussed in literature. 
Feasibility of all the proposed algorithms was confirmed 
by imitation simulation of samples of random AS with 
spectral–correlation and noise parameters characteristics 
of the acoustic sounding of the atmosphere.4 The above 
considered algorithms are quite general. In our opinion, it 
is possible to use them in the other practical applications. 
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