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A theory and scheme of processor design as well as results of numerical 
experiment on a computer using specially created programs are presented in this paper. 

 

The accuracy in estimating time delays of signal copies 
detected by various sensors is of importance for the location 
of isotropic sources of the pulse optical radiation from 

satellite observation data1 and for some other applications.2 
One can obtain the high accuracy (fractions of a sample 
step) with high level of noise (overlapping signal at the first 
8–10 steps of a sample) in a scheme of a specially developed 
FTF–TDE processor (time delay estimator built around a 
fast transversal filter) using cubic splines for smoothing of 
the signals to be compared.  

The problem for two sensors is formulated by the 
equations 

 

⎭
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1
(k) = s(k) + n

1
(k) ,

x
2
(k) = a s(k + Δ) + n

2
(k) ,  k = 0, 1, ... , (1) 

 
where s(k) and a s(k + Δ) are the samples of the signals s(t) 
and α s(t + Δ), respectively; n

1
(k) and n

2
(k) are the random 

noise sequences (white Gaussian noise with zero mean 
value) independent of one another and of the signal s(t): 
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(2) 

ni(k) nj(l)  = Qi δ(k – l) δij ,  i, j = 1, 2 ; 

 
δ(k – l) is the discrete analogue of the Dirac delta–
function; δij is the Kronecker symbol; the bar atop the 

symbol indicates ensemble averaging. The delay Δ must be 
estimated from the given realization of the random processes 
x

1
(k) and x

2
(k). 

A classical approach to solving this problem is to 
calculate the function Rx1x2

(τ) of cross correlation between 

x
1
 and x

2
 and to determine the delay τ = τ

0
 at which the 

function reaches its maximum.1 The value τ
0
 is taken as the 

estimate of Δ: τ
0
 = Δ

∧

. The method of adaptive filtration has 

come into use for the same purposes recently. 
The method implies that the signal copies to be 

compared, for example, x
1
(k) and x

2
(k) from Eq. (1), are fed 

as input and reference signals into an adaptive filter operating 
in the mode of identification of a linear system connected in 
parallel. After the adaptation period that lasts m sample steps, 
the pulse response characteristic of the filter represented by a 
column vector of p numbers in the nth step 

 
hp(n) = [h

1
(n), ... , hp(n)]T, 

 

is transformed so that its convolution with the input signal 
x

1
(k) approximates best the reference signal x

2
(k) (by the 

criterion of the least mean–square (LMS) error). 
Let us designate 
 

x
1p(n) = [x
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(n), x

1
(n – 1), ... , x

1
(n – p + 1)]τ  

 
and   
 
x

2p(n) = [x
2
(n), x

2
(n – 1), ... , x

2
(n – p + 1)] , 

 
then 

 

 

x
2p(n) = hτ

p(n) * x1p(n),  n > m , 

 
where T is the transposition sign, and asterisk is the 
convolution sign. One determines the delay Δ from the 
position of maximum of the dependence hi(n) on i (1 ≤ i ≤ p) 

for n > m; for signals of identical structure with low level of 
noise, the delay is close to the Dirac delta–function 

hi(n) ≈ δ(i – Δ
∧

), where Δ
∧

 is the estimate of Δ.  

John, Ahmed, and Carter3 proposed to use the 
Whidrow adaptive filter6 operating in the mode of 
identification of unknown system as a time delay estimator 
(TDE) and described the algorithm LMS TDE. However, 
although this algorithm solves the problem of TDE with 
high accuracy and reliability, it is insufficiently fast for 
operation in real time. The FTF TDE algorithm, proposed 
and implemented in Ref. 4, is free of this disadvantage. It is 
based on the adaptive fast transversal filter5 (FTF) that 
provides data processing in real time. 

The FTF–TDE works well with low noise level, but 
its characteristics deteriorate rapidly as the noise level 
increases and fall outside the limits specified by the form of 
the function s(t) and the sample step. In this paper, we 
investigate the feasibility of increasing the accuracy and 
reliability of the FTF–TDE operation when the additive 
noise background falls outside this limit, by means of 
including the operations of preliminary filtering of input 
and reference signals, namely, their approximation by 
smoothing splines, into the scheme. 

One can find the general definition of the 
approximation spline functions in Ref. 6. Let X and Y be 
two Hilbert spaces, and T: X → Y be the linear operator 
acting from X to Y. Let the system of linear finite 
functionals ki (i = 1, ..., n) that is supposed linearly 

independent be set in X. If the element σ ∈ X satisfies two 
conditions 
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1) ki(σ) ≡ (ki, σ)X = ri ,  i = 1, ... , n , 
 

2) (T σ, T σ)Y ≡> T σ > 2
Y = min , 

 

where (,)X and (,)Y are the scalar products in X and Y, 

respectively, and ri are the given numbers, then it is 

referred to as interpolation spline. (The possibility of 
representation of the functional ki on the vector σ by a 

scalar product follows from the Riesz theorem on 
representation of linear functional in the Hilbert space.) 
The element σ

α
 ∈ X is called smoothing spline if it 

minimizes the square functional 
 

Φ
α
(u) = α> T u> 2

Y +∑
i=1

n

 [(ki, u) – ri]
2

 = α> T u> 

2

Y
 + > K u – r> 

2

Rn , 

α > 0. 
 

The discrepancy of equation Ku = r and the energy 
functional > T u> 2 are combined in this functional with the 
weight α > 0. The minimization of Φ

α
(u) yields no spline of 

a new type. The smoothing spline σ
α
 is the interpolation 

spline with the vector of input data r
α
 = K σ

α
. 

In the examined problem of spline approximation of 
noisy signals in the FTF–TDE scheme, T is the operator of 
double differentiation, and K is the operator of spur of 
function being reconstructed on the grid x

1
, ..., xn. The 

peculiarity of this problem is the fact that redundant 
smoothing of input data and losses of their fine structure 
connected with the use of too strong smoothing operators are 
not awful, if they produce no relative time delay of the 
dependence to be compared. The experience shows this is the 
case in the majority of TDE situations arising in practice, i.e., 
the selection of the specific value of the regularization 
parameter α at the preliminary filtration stage is not too 
critical. It makes finding of the optimum (more exactly, 
quasioptimum) numerical value of the parameter α more easy. 

The spline was constructed by the classical Reinsh 
method.7,8 The problem is formulated as follows. Let the 
pairs of numbers xi, yi, i = 0, 1, ..., n be given, with 

x
0
 < x

1
 < ... < xn. It is necessary to find the function that 

minimizes the expression 
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 g″(x) d x (3) 

among all g(x) so that 
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i=0

n
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2

 ≤ S,  g ∈ C 
2 [x

0
, xn]. (4) 

 

Here δ yi > 0, i = 0, 1, ..., n; C 
2[x

0
, xn] is the class of 

functions that are continuous together with their second 
derivatives in the interval [x

0
, xn]; and, S is the constant 

introduced for convenience. This makes it possible to scale 
the values δ yi when adjusting the smoothing degree. The 

recommended values S depend on the relative weight δ yi
2. 

When there is any a priori information, one usually takes 
the standard deviations of the values yi as δ yi. In this case, 

the natural values S are within the confidence interval 
corresponding to the left–hand side of Eq. (4) 
 

N – (2 N)1/2 ≤ S ≤ N + (2 N)1/2,  N = n + 1 . (5) 
 

Equations (3) and (4) are solved by standard methods 
of calculus of variations. Introducing the auxiliary variable 
z and the Lagrange parameter p, we come to the problem of 
minimizing the functional  

⌡
⌠

x
0

xn

 

 
g″(x) d x + p 
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⎝
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2

 + z2 – S  . (6) 

The unambiguous solution is the cubic spline called the 

Scho⋅⋅nberg spline, i.e., the function f(x) consisting of the 
cubic parabolas 
 

f(x) = ai + bi ( x – xi) + ci ( x – xi)
2 + di ( x – xi)

3 , (7) 
 

xi ≤ x < xi+1
 ,
 
 i = 0, 1, ... , n , 

 

conjugate through common end points, with f, f ′, and f ′ 
being continuous.  

A program (writen in C) has been developed that 
implements the procedure of calculation of all the 
coefficients ai, bi, ci, and di (i = 0, ..., n) included in 

Eq. (7) and the parameter p. 
Application of the cubic smoothing spline at the stage 

of preliminary filtration of the input and reference signals 
complicates the FTF–TDE algorithm not too much,4 but 
substantially improves its stability for the additive noise 
effect. The spline approximation of input and reference 
signals in the FTF–TDE scheme makes it possible to keep 
the error in determining the time delay Δ within the limits 
of a sample interval up to the level of noise whose standard 
deviation corresponds to the increment s at the first 8–10 
steps. The experimental data confirming this conclusion are 
shown in Figs. 1 and 2 for typical situation described by 
Eq. (1) with 
 
s(t) = A t exp(– t/T) , 
 
where T = 10, A = 3.7, a = 0.7, Δ = 4. Here h

1
(t) and h

2
(t) 

are the independent levels of noise produced by a generator 
of random numbers. 
 

 
 
FIG. 1. FTF–TDE response function for unsmoothed 
signals with different levels of noise. 
 

Figure 1 shows the pulse response characteristics of a 
filter h(t) interpolated by the Kotel'nikov–Shennon 
formula (in the experiment, it was represented by a set of 
numbers hi, i = 1, ..., p, p = 20) in a steady mode of 

adaptation for signals x
1
(t) and x

2
(t) without noise 

(curve 1) and for the same signals against the additive  
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white noise background with zero mean value and 
standard deviation σ = 0.2 (curve 2) and 0.8 (curve 3). 
The position of maximum in the first two curves is very 
close (within the limits of error ±0.01) to the delay 
Δ = 4; in the third curve, it is shifted from this value by 
1.4. The same curves are shown in Fig. 2 for σ = 0.8 with 
spline smoothing of input and reference signals (curve 1) 
and without smoothing (curve 2). As is seen from Fig. 2, 
the smoothing procedure eliminates the distorting effect 
of the noise on the processor accuracy characteristics. 

 

 
 

FIG. 2. FTF–TDE response function for noisy signal 
without (2) and with (1) smoothing. 

 

The results of our investigation enable us to draw 
the following conclusion. Including the preliminary  

filtration procedure with the use of smoothing splines 
into the FTF–TDE scheme essentially improves the 
processor characteristics and makes it possible to obtain 
the reliable and highly accurate algorithm for estimating 
the time delay of signals for solving different problems of 
applied optics including the problem of determination of 
the position of isotropic pulse radiation source from the 
data of satellite observations. 
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