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Attempt is described to use a model approach to description of a spatial 
structure of the turbulence in the region of large spatial scales. The idea of the 
approach is in the determination of the spectral tensor based on measurement data or a 
model setting of one–dimensional fluctuation spectra of the three wind velocity 
components. The spectral tensor obtained in such a manner is used to predict spatial 
coherence of the velocity components fluctuating in the plane perpendicular to the 
mean wind direction. Comparison of the predicted and experimental coherences is 
presented. The applicability and limitations of this model of spectral tensor of the 
anisotropic velocity field for homogeneous turbulence in the near–ground atmospheric 
layer is analyzed based on the data obtained. 

 
Mathematical and physical modeling of the boundary 

atmospheric layer is being rapidly developed in recent 
years. But, in spite of certain successes, no common 
universal model of the boundary layer of the atmosphere 
has been developed so far. At the same time there exist a 
large number of particular models1 every of which 
satisfactorily reproduces some or other properties of the 
boundary layer.  

The choice of a model is determined by the problem 
to be solved. In particular, there are important practical 
problems requiring good understanding of the spatial 
structure of the wind velocity field in the boundary layer 
of the atmosphere. For example, the calculations of wind 
loads give rise to the problem of correlations between 
wind pulsations at different levels of the boundary layer 
when the spectral coherence is used to estimate spatial 
variability of the wind pressure on constructions. 

Numerous observations of the one–dimensional 
component of the velocity fluctuation spectrum in the 
boundary atmospheric layer described in the literature are 
not sufficient to describe spatial structure of the 
turbulence when the distances between measuring points 
are of the turbulence scale. 

Kinematic turbulence model based on the 
representation of the spatial spectrum of wind velocity 
fluctuations in the form of anisotropic tensor Φij(κ) was 

proposed in Ref. 2 for investigating turbulence in the 
region of large spatial scales. 

The spectrum Φij(κ) is a generalization of the 

homogeneous and isotropic spatial spectrum Φ(κ) to the 
case of a homogeneous but anisotropic velocity field in 
the boundary layer. 

Let us consider a homogeneous incompressible 
turbulent velocity field. For such a field the ensemble–
averaged wind velocity V

0
 is constant in space, and the 

covariant tensor 
 

Bij(r) = <[Vi(r1) – V
0i] [Vj(r2) – V

0j]>, i, j = 1, 2, 3 (1) 
 

is a function of the spacing vector r = r
2
 – r

1
 only. 

Let us introduce a spatial coordinate system in such a 
way that the longitudinal direction (along the average wind) 
will be characterized by the unit vector i

1
, the vertical 

direction – by the unit vector i
3
, and the transvere direction – 

by the vector i
2
 = i

3 
×

 
i
1
, respectively. 

The following expression for the spectral tensor, 

Φij(κ) = 
1

(2 π)3 ⌡⌠ Bij(r) exp (– i κ r) d3r, has been 

proposed in Ref. 2: 
 

Φij(κ) = ∑
l=1

3

 Al(κ) 
⎩
⎨
⎧

⎭
⎬
⎫

δli – 
kl ki

k2 ⎩
⎨
⎧

⎭
⎬
⎫

δlj – 
kl kj

k2 , (2) 

 
where A

1
(κ), A

2
(κ), and A

3
(κ) are real independent scalar 

functions of κ. Assuming that all the three functions in 
Eq. (2) are similar A

1
(κ) = A

2
(κ) = A

3
(κ) = E(κ)/(4πκ2) and 

summing over l we obtain the well–known expression3 for the 
isotropic spectral tensor 
 

Φij(κ) = 
E(k)

4 π k2 ⎩
⎨
⎧

⎭
⎬
⎫

δij – 
ki kj

k2 .  

 
In other words, isotropy is included into the model as a 
particular case. 

Here we investigate the velocity field in a plane 
perpendicular to the direction of the average wind V

0 
i
1
, i.e., 

we define the shift as 
 

R = R cos θ i
2
 + R sin θ i

3 
, (3) 

 
where θ is the angle between the direction of the shift and the 
horizon. 

One of the most important applications of the 
spectral tensor is studying of the spatial structure of 
turbulence. A useful instrument for these purposes is the 
coherence function 
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Γ2
ij(R, ω) = 

⏐Wij(R, ω)⏐2

[Wij(0, ω) Wji(0, ω)]
 , (4) 

 

where Wij(R, ω) = 
1
2π ⌡⌠

–∞

∞

 Bij(R, τ) exp(–iωτ)dτ is the cross 

spectrum. 
Transforming the spatiotemporal correlation function 

Bij(R, τ) into purely spatial, in accordance with Taylor's 

freezing hypothesis, expanding it into a three–dimensional 
spatial spectrum, and integrating over τ we obtain for the 
cross spectrum the following formula 
 

Wij(R, ω) = 
1
V

0

 
⌡
⌠

–$

$
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V
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1
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 i

2
 + k

3
 i

3
 × 

 

× exp [i R (κ
2
 cos θ + κ

3
 sin θ)] dκ

2
 dκ

3
 , (5) 

 
where Φij(κ) is defined by the expression (2). 

Let us consider, for definiteness, the coherence 
spectrum for longitudinal velocity components (i = j = 1) 
when the observation points are spaced in a plane 
perpendicular to the direction of the average wind. 

By transforming Eq. (5) to the form in polar 
coordinates and integrating over the angle variable we 
obtain 
 

W
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2 π
V
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where κ = k2 + ω2/V 
2
0
 , Jn(x) are Bessel functions of the 

nth order. 
Thus, now the problem is to find unknown functions 

A(κ). Kristensen and Lenschow2 have created a model of 
the spectral tensor Φij(κ) in which the functions A

1
(κ), 

A
2
(κ), and A

3
(κ) are expressed in terms of one–

dimensional spatial spectra of fluctuations of wind 

velocity components Fii(κ
1
i
1
) = ⌡⌠

–∞

∞

 Φii(κ)dκ
2
dκ

3
. The idea 

of such an approach is to define the spectral tensor by 
measurement data or by a model setting of one–
dimensional spatial fluctuation spectra Fu(κ), Fv(κ), and 

Fw(κ) of the longitudinal (u), transverse (v), and vertical 

(w) wind velocity components. One–dimensional model 
spectra have the property that they are close to locally 
isotropic when the wave numbers are large. But, they can 
have different scales and curvature when wave numbers in 
the energetic portion of the spectrum are small. 

 

Thus, following the model from Ref. 2 we can 
calculate A–functions defining the spectral tensor and, 
therefore, predict the coherence. 

A series of experiments has been performed to verify 
this model. Simultaneous measurements of the 
longitudinal, transverse, and vertical components, u, v, 
and w, of the wind velocity were performed using three 
acoustic meteorological stations4 spaced in both 
horizontal and vertical directions. 

Auto– and crosscorrelation functions, autospectra, 
phase spectra, and coherence spectra were calculated for 
all three velocity components when processing 
measurement data. The data analysis is not yet completed. 
Nevertheless, one can compare coherence spectra of 
fluctuations of the longitudinal wind velocity component 
for transverse horizontal spacings (what corresponds to 
the angle θ = 0). 

In Fig. 1 dashed lines show the coherence spectra 
predicted for different spacings based on the model 
representation2 and related to the neutral boundary layer 
(curves 1'– 4'), while solid lines show coherence 
functions found directly in the experiment (curves 1– 4). 

 

 
 

FIG. 1. Experimentally obtained (1– 4) and calculated 
using a model (1'– 4') coherence spectra for longitudinal 
wind velocity component for different spacings in the 
transvers horizontal direction: R/L = 0.064 (1 and 1'), 
0.127 (2 and 2'), 0.509 (3 and 3'), and 1.018 (4 and 4'). 

 

In accordance with the data obtained the coherence 
for spacings which are small as compared with the outer 
turbulence scale L is well predictable. Moreover, the best 
coincidence is observed in the region of small wave 
numbers. For large distances the predicted coherence 
slightly exceeds the experimentally obtained one. This 
can probably be explained by the restrictions imposed in 
the model because of freezing hypothesis used when 
coming from frequency spectra to spatial ones and by the 
fact that the model description used is applicable to the 
homogeneous turbulence only. 

Updating the model, taking into account "local 
freezing" and its extension to the case of inhomogeneous 
wind velocity field in the boundary layer of the 
atmosphere may be the next step in our study. 
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