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Using the physical optics method, asymptotic expressions have been 
obtained for the cross sections and efficiency factors of extinction and scattering 
when one of the linear dimensions of a rectangular plate tends to infinity. It has 
been found that for this scattering problem the error of the physical optics 
method depends on the values of two definite integrals. Each of them is an 
asymptotic expression of corresponding double integral obtained for rectangular 
plate. It is shown that estimate of the systematic error is essentially simplified 
with the use of asymptotic expressions instead of double integrals. 

 

An estimate of the error of the physical optics 
method was given in Ref. 1 in the form of inequality 
the right–hand side of which was a linear 
combination of two double integrals. Each of them 
depended on two diffraction parameters 
corresponding to two linear dimensions of a 
rectangular plate. It was shown1 that the increase of 
one of the diffraction parameters led to the decrease 
of the error of the physical optics method. But in this 
case, the systematic error was limited by a horizontal 
asymptote. To determine its position, we need either 
to integrate numerically fast oscillating functions of 
two variables or to proceed to the limit under 
condition that one of the two diffraction parameters 
tends to infinity.  

However, preliminary prepared tables of 
horizontal asymptotic values would essentially 
simplify the estimate of the error of physical optics 
method in solving one or another scattering problem. 
Then it is of interest to simplify the statement of the 
problem of scattering by the rectangular plate. To do 
this, it is necessary to tend one of the linear 
dimensions of the plate to infinity and then to reduce 
the problem to a linear case. 

Let a semitransparent plate with the refractive 
index n and the absorption index κ = 0 be infinite 
along the y axis and have the width 2à along the x 
axis and the thickness d along the z axis. Let the 
plane wave Ei be incident on the plate normally, i.e., 
Ei = Eeikz. We define the amplitude of the electric 
component of the incident field in the form 

 

E = E1 + E2 = x′0E1 + y′0E2 = x0Ep
1
 + y0Ep

2 , (1) 
 

where 
 

Ep
1
 = E1cos ξ – E2sin ξ ,  Ep

2
 = E1sin ξ + E2cos ξ . 

 

For such definition of the amplitude E, its 
components E1 and E2 are at an angle ξ relative to 
the x and y axes. 

Transition from a body of finite size to an 
infinitely long body results in the qualitative change 
of the Green’s function for the problem of scattering. 
In fact, the Green’s function of a scatterer of finite 
size in the form of a spherical wave is transformed to 
the Hankel function2 upon integrating over one of 
the transverse coordinates between infinite limits. In 
this case, the scattered field for the infinitely long 
plate has the structure of a cylindrical wave. 
Considering the cylindrical coordinate system 
(ρ, ϕ, y) whose axis coincides with the y axis and 
using the asymptotic representation of the zero order 
Hankel function of the first kind for large argument,3 
we write down the following expression for the 
electric component of the scattered field: 

 

Es = A
2 π
k ρ exp[i(kρ – π/4)] , (2) 

 

where 
 

A = A1 + A2 = (ϕ0Ep
1
 + y0Ep

2
)S(ϕ) . (3) 

 

The unit vectors of the Cartesian coordinate 
system x0, y0, and z0 affixed to the plate are related 
with the unit vectors of the cylindrical system of 
coordinates ρ0, ϕ0, and y0 by the following 
expression: 

 

x0 = ρ0sin ϕ + ϕ0cos ϕ ,  
 

y0 = y0 , (4) 
 

z0 = ρ0cos ϕ – ϕ0sin ϕ . 
 

For this relation between the coordinate systems, the 
angle ϕ is counted off from the z axis in the OXZ 
coordinate plane. The function S(ϕ) is the integral 
characteristic of scattering in the far zone of the 
beams coming from the plate in forward and back 
directions. It is determined by the expression  
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S(ϕ)=
k
2π

 ⎣
⎡

⎦
⎤1+cosϕ

2  F1(ϕ)(1–T) + 

1+cos(π–ϕ)
2  F2(ϕ)R . 

 (5) 
 

The complex values T and R are here the Fresnel 
transmittance and reflectance for a plane wave 
incident normally on a semitransparent layer of 
thickness d. They have the same form as in the 
problems of scattering by rectangular1 and round4 
plates. The functions F1(ϕ) and F2(ϕ) are the 
Fraunhofer integrals of the phase functions from – a 
to a. Upon integrating, the functions F1(ϕ) and 
F2(ϕ) are transformed to the form 

 

F1(ϕ) = 2a 
sin(p sin ϕ)

p sin ϕ  , 

 

F2(ϕ) = 2a 
sin(p sin (p – ϕ))

p sin (p – ϕ)  , (6) 

 

where p =ka is the diffraction parameter, k =2π/λ is 
the wave number, and λ is the wavelength. Taking 
into account that F1(ϕ) = F2(ϕ) and designating 
them by F(ϕ), we write down the expression for the 
angular function S(ϕ) in the form 

 

S(ϕ) = 

k
2π

F(ϕ)⎝
⎛

⎠
⎞1 + cosϕ

2   (1 – T) + 

1 – cosϕ

2   R  . (7) 

 

It has been shown in Ref. 1 that when a plane wave 
is incident normally on the plate, the scattering and 
extinction characteristics do not depend on the wave 
polarization state. So let us choose such polarization 
state for which the solution of the scattering problem 
is simplest. Then we generalize the derived formulas 
to the case of arbitrary polarization. Let Ep

1
 = 0 and 

Ep
2
 = 1, which corresponds to the linear polarization 

of the incident wave whose electric component is 
directed along the y axis. Then we can write for the 
electric component of the total field 

 

Et = Ei – Es = y0(ψi – ψs) , (8) 
 

where 

ψi=exp(ikz), ψs = 
2 π
kρ

 exp[i(kρ – π/4)] S(ϕ) , (9) 

 

i.e., the scattering problem is reduced to a scalar 
case. 

Following the general conception that was used 
in derivation of the formula for the extinction cross 
section,5 we can write the expression for this 
characteristic in the case of a plane wave 

 

σext = 
4π

k  Re(S(0)) . (10) 
 

When the wave is incident normally on the 
plate, the geometric shadow is formed with linear 
size 2a in the OXZ plane. Taking into account that 

S(0) = 
p
π
 × (1 – T), we obtain for the extinction 

efficiency factor  

Qext = 
σext

2a
 = 2(1 – Re(T)) . (11) 

 

For this statement of the problem, i.e., for the 
normal incidence of the wave on the infinitely long 
plate, the formula for the extinction efficiency factor 
has the same form as for round4 and rectangular1 
plates. 

In the case of a plane wave, the scattering cross 
section is defined for the unit amplitude of the 
incident field as the total intensity scattered by the 
plate in the OXZ plane, i.e., 

 

σsca = 
⌡⌠
0

2π

 

 

|ψs|
2ρdϕ = 

2π

k  
⌡⌠
0

2π

 

 

|S(ϕ)|2dϕ. (12) 

 

Taking into account Eq. (7) for S(ϕ) and 
introducing a new function  

 

f(ϕ) = F(ϕ)/2a = 
sin(psin ϕ)

psin ϕ  ,  
 

we transform the formula for the scattering cross 
section to the form 

 

σsca = 
2π

k  
p2

π2 

⎝
⎜
⎜
⎛
|1 – T|2 

⌡⌠
0

2π

 

 

f 2(ϕ)⎝
⎛

⎠
⎞1 + cos ϕ

2

2

dϕ  + 

 

+ |R|2
⌡⌠
0

2π

 

 

f 2(ϕ)⎝
⎛

⎠
⎞1 – cos ϕ

2

 2

dϕ + 2Re([1 – T]R*) × 

 

× 

⎠
⎟
⎟
⎞

⌡⌠
0

2π

 

 

f 2(ϕ)⎝
⎛

⎠
⎞1 + cos ϕ

2  ⎝
⎛

⎠
⎞1 – cos ϕ

2 dϕ  . (13) 

 

Using the equality 
 

⌡⌠
0

2π

 

 

f 2(ϕ) ⎝
⎛

⎠
⎞1 + cos ϕ

2

2

dϕ = 
⌡⌠
0

2π

 

 

f 2(ϕ) ⎝
⎛

⎠
⎞1 – cos ϕ

2

2

dϕ 

 

and going to the scattering efficiency factor 
Qsca = σsca/(2a), we obtain  

 

Qsca = (|1 –T|2 + |R|2)C(p) + 2Re((1 –T)R*)D(p) ,  (14) 
 

where 

C(p) = 
p
π
 
⌡⌠
0

2π

 

 

⎝
⎛

⎠
⎞1 + cos ϕ

2

2

f 2(ϕ)dϕ , 

(15)

 

D(p) = 
p
π
 
⌡⌠
0

2π

 

 

⎝
⎛

⎠
⎞1 + cos ϕ

2  ⎝
⎛

⎠
⎞1 – cos ϕ

2 f 2(ϕ)dϕ. 

 

Expression (14) for the scattering efficiency 
factor has the same structure as for the round and 
rectangular plates, but is different in the form of 
functions C and D. 
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Formulas (11) and (14) have been obtained for 
scalar incident and scattered fields. Let us show that 
for vector fields, i.e., when it is necessary to consider 
arbitrary polarization of the incident field, the 
solution of the problem is reduced to the same 
formulas (11) and (14). Let us generalize initial 
formulas (10) and (12) for the extinction and 
scattering cross sections to the case of arbitrary 
fields, i.e., let us represent these characteristics in 
the form 

 

σext = 
4π

k  
Re(E*A|ϕ = 0)

|E|2  , (16) 
 

σsca = 

1
|E|2 ⌡⌠

0

2π

 

 2π

kρ
 exp[i(kρ – π/4)]À

2

ρdϕ = 

 

= 
1

|E|2 

2π

k  
⌡⌠
0

2π

 

 

|A|2dϕ . (17) 

 

However, for this statement of the scattering problem 
 

A|ϕ = 0 = (x0Ep
1
 + y0Ep

2
)S(0) = ES(0) , 

 

|A|2 = A*A = (|Ep
1
|2 + |Ep

2
|2)|S(ϕ)|2 . 

 

In addition, it should be taken into account that 
 

|E|2 = E*E = |Ep
1
|2 + |Ep

2
|2 = |E1|

2 + |E2|
2 . 

 
As a result, Eqs. (16) and (17) are reduced to 

aforementioned Eqs. (10) and (12). Hence, the final 
formulas for scattering characteristics (11) and (14) 
are valid for arbitrary polarization of the wave 
incident normally on the plate. 

Let us take the value δ, related with the 
scattering characteristics Qext and Qsca determined 
above by the expression δ = (Qext– Qsca)/Qext, as a 
relative error of the physical optics method in the 
case of a plane wave. Following the approach used in 
Refs. 1 and 4, we obtain the inequality for estimating 
the value δ: 

 

δ(p) ≤ 1 – C(p) + D(p) . (18) 
 

By elementary manipulations, we may essentially 
approach the limits of integration of the integrals Ñ 
and D and write them in the following form: 

 

C(p) = 
p
π
 
⌡⌠
0

π/2

 

 

 (1 + cos2ϕ) ⎣
⎡

⎦
⎤sin(psin ϕ)

psin ϕ

2

dϕ , (19) 

 

D(p) = 
p
π
 
⌡⌠
0

 π/2

 

 

sin2 ϕ ⎣
⎡

⎦
⎤sin(psin ϕ)

psin ϕ

2

dϕ . (20) 

 

Thus, analytical expression (18) determines the 
asymptotic values of the error of the physical optics 

method when one of the linear dimensions of the 
rectangular plate tends to infinity. 

The values of the integrals C and D are shown 
in Fig. 1 as functions of the diffraction parameter 
p. The curves C(p) and D(p) are bounded by the 
horizontal asymptotes C = 1 and D = 0. In this 
case, as the parameter p increases, the integrals C 
and D tend to their asymptotes faster than the 
corresponding intervals À and Â for round4 and 
square1 plates. An error of 1% is reached in the case 
of a plane wave for the diffraction parameter 
p = 50, and the systematic error does not exceed 
2% and 3% for p = 26 and 17, respectively. 

 

 
 

 
 

FIG. 1. Integrals C and D as functions of the 
diffraction parameter p. 
 

The estimate of the relative error of the physical 
optics method was given in Ref. 1 for the rectangular 
plate in the form of inequality 

 
Δ(p, q) ≤ 1 – A(p, q) + B(p, q) . (21) 
 

The functions A and B depending on the 
diffraction parameters p è q are the double 
integrals of fast oscillating functions. The number 
of oscillations increases with the increase of p and 
q. It would entail much computation time for the 
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numerical integration. However, in this case we can 
simplify the procedure of estimating the systematic 
error. To do this, let us replace the double integrals 
A and B by combinations of simpler functions C and 
D. Preliminary analysis of the values of A, B, C, and 
D for different diffraction parameters p and q makes 
it possible to relate them by the following 
expressions: 

 
A(p, q) ≈ C(p) C(q), (22) 
 

1 – B(p, q) ≈ (1 – D(p)) (1 – D(q)) . (23) 
 
The larger are p and q, the better the approximate 
equalities hold. As a result, one can use the 
inequality 
 
Δa ≤ 1–C(p) C(q) + D(p) +D(q) – D(p) D(q) (24) 
 
instead of estimate (21). 

The values of Δ and Δà calculated for different 
diffraction parameters p and q are presented in 
Table I. The values of Δ and Δà practically coincide 
for large p è q. As a rule, when estimating the 
systematic error, it is suffice to calculate the value of 
Δ to two–three significant digits beyond the decimal 
point, which justifies replacing Δ by Δà. It should be 
noted that the integrals C and D are calculated much 
simpler than A and B. In addition, C and D depend 
only on one diffraction parameter, which makes it 
possible to tabulate them beforehand and give their 
main values in a small table. Some values of the 
integrals C and D are given in Table II. 
 

TABLE I. Values of the error of the physical optics 
method obtained by means of calculation of double 
integrals A and B and definite integrals C and D 
for rectangular plate. 

 

p q Δ Δa 

5 5 0.1962 0.1968 

10 5 0.1479 0.1488 

20 5 0.1246 0.1250 

40 5 0.1128 0.1130 

80 5 0.1070 0.1070 

10 10 0.0985 0.0989 

20 10 0.0743 0.0745 

40 10 0.0622 0.0623 

80 10 0.0562 0.0561 

20 20 0.0497 0.0498 

40 20 0.0373 0.0374 

80 20 0.0313 0.0313 

40 40 0.0249 0.0250 

80 40 0.0186 0.0187 
 
 

TABLE II. Values of the integrals C and D for 
different diffraction parameters p. 

 

p C D 

5 0.9612 0.0623 

10 0.9707 0.0208 

15 0.9849 0.0181 

20 0.9873 0.0124 

25 0.9895 0.0094 

30 0.9924 0.0091 

35 0.9922 0.0065 

40 0.9942 0.0067 

45 0.9943 0.0054 

50 0.9949 0.0049 

60 0.9955 0.0039 

70 0.9963 0.0034 

80 0.9970 0.0032 

90 0.9974 0.0029 

100 0.9975 0.0025 

150 0.9984 0.0017 

200 0.9988 0.0013 

250 0.9990 0.0010 

300 0.9992 0.0009 

350 0.9993 0.0007 

400 0.9994 0.0006 

450 0.9994 0.0005 

500 0.9995 0.0005 

600 0.9996 0.0004 

700 0.9996 0.0004 

800 0.9997 0.0003 

900 0.9997 0.0003 

1000 0.9997 0.0002 

2000 0.9999 0.0001 

3000 0.9999 0.0001 
 

Thus, the joint use of inequality (24) and data 
of Table II makes it possible to estimate the error of 
the physical optics method when it is necessary to 
define the cross sections of resultant beams by two 
linear dimensions. 
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