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An expression for threshold pumping intensity producing stimulated Raman 
scattering (SRS) have been derived on the basis of the energy conservation law. 
Energetic thresholds for SRS in drops have been calculated as functions of their 
radii under conditions of resonant excitation of SRS by laser radiation. The results 
have been compared with the available experimental data. It has been found that 
the SRS threshold depends ambiguously on a drop radius for a given type of 
resonant modes maintaining the SRS. 

 
In recent years, nonlinear optical phenomena in 

transparent micron$sized drops have become the topic of 
a large body of research. Efforts are underway to study 
the stimulated Raman scattering (SRS) process,1$4 
Mandel’shtam$Brillouin stimulated scattering (MBSS),5 
stimulated fluorescence,6$7 and nonlinear wave 
combination.8  This is connected with properties of a 
spherical particle to concentrate the incident 
electromagnetic energy in its volume as well as with 
natural resonant modes with spatial structure being 
analogous to that of whispering gallery modes in 
acoustics.  At the same time, the problem of energy 
thresholds of the SRS phenomenon calls for further 
theoretical investigations. 

Available experimental data on the above 
problem give no way to define clearly the energy 
thresholds of the phenomenon under study. In the 
present paper, the SRS thresholds have been 
theoretically estimated for transparent drops (κ ≤ 10$6 
in the visible wavelength range) of various radii on the 
basis of an approach analogous to that applied in laser 
physics for determination of lasing threshold. 

Let us clarify the conditions of the SRS in a 
liquid particle. Large drops can be considered as optical 
resonators, in which the spherical drop$air interface 
plays the role of mirrors. The spectrum of natural 
modes of such a resonator depends on the diffraction 
parameter x = 2πa0/λ, where a0 is the drop radius, λ is 
the radiation wavelength, and ma = na + iκ is the 
complex refractive index of a liquid. 

As is well known, an incident light field is 
distributed over the transparent particle very 
inhomogeneously9 with principal maxima near shaded 
and illuminated zones of the drop in the direction of 
radiation propagation. It is these zones that are major 
sources of spontaneous Raman scattering (RS) of an 
electromagnetic wave. A portion of waves of the RS 
spectrum leaves the drop, while another portion of 
waves propagates along the drop surface because of 

total internal reflection. A positive feedback may cause 
subsequent reinforcement of waves and SRS for the 
frequencies ωs of the Raman spectrum for which the 
total run$on of the phase along the drop circle is a 
multiple of 2π. In fact, this condition means that the 
Raman scattering frequency ωs is tuned to the resonant 

frequency of the drop$resonatior ωn
l. From this 

viewpoint, the SRS field is a standing wave whose 
spatial configuration matches that of the given 
resonator. 

Spatial field distribution of natural resonant modes 
is usually characterized by three indices: 

$ serial number n being equal to twice the number 
of spikes in the angular distribution of internal field 
across the drop equator, 

$ mode order l determining the number of spikes 
in the angular average internal field distribution across 
the radial direction 0 ≤ r ≤ a0, 

$ azimutal number mz. 
As an example, the spatial profile of the resonant 

mode TE50 across an ethanol drop (ma = 1.4746 + i⋅0) 
is shown in Fig. 1 for three different mode orders l. 

As is well known, in the case of an ideal sphere 
degeneration of natural modes by the number mz is 
observed, and it is sufficient to know only two 
parameters n and l to characterize each individual 
resonance. Deformation of the sphere lifts this 
azimutal degeneration, and each mode is splitted into 
a multiplet composed of (2n + 1) lines. The resonant 
mode field, as a rule, is localized at the drop surface. 
Resonant properties of each mode (resonant frequency 
and Q$factor) depend essentially on its serial number 
and order. With increase of the mode serial number 
n, the Q$factor of natural resonant modes increases; 
in doing so, its effective volume Vm ∼ 1/(2n + 1) 
decreases.  At fixed n, the increase of the mode order 
results in the decrease of the Q$factor and the 
increase of the mode volume. 
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FIG. 1. Spatial profile of the resonant mode TE50 with 
in a transparent non$absorbing ethanol drop 
(ma = 1.4746 + i⋅0 and λ = 0.53 μm) for various mode 
orders l. 

 
FIG. 2. Dependence of radiative Q$factor, Qr , of 
different resonances on the diffraction parameter of a 
drop without light absorption by the material of the 
resonator.  

 
In Fig. 2, the Q$factor for various resonances Qr 

is shown as a function of the diffraction parameter of 
the drop without light absorption by the material of 
the drop$resonator. The Q$factor was calculated by the 
formulae of the Mie theory11 
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where ε is the dielectric constant of a liquid, k =1 and 
0 for TM and TE waves, respectively; and, xl is the lth 

root of the equation Ai(xl) = 0 (Ai is the Airy 
function). 

It is seen from the figure that theoretical values of 
Qr can be larger than 1030. However, it was found 
experimentally5,6 from the measured lifetime of excited 
states that the values of Qr, as a rule, are less than 
106$108 (see Ref. 3). This points to additional losses of 
radiation in the drop$resonator disregarded by the 
classical Mie theory. Among these are losses caused by 
deviation of the drop shape from an ideal sphere (for 
example, due to its thermocapillary oscillations), light 
scattering by liquid inhomogeneities, and nonlinear 
variations of the refractive index in zones of the 
internal electromagnetic field concentration. As 
estimates have shown,10 the first phenomenon is of 
primary importance in calculating of the Q$factor of 
resonant modes, while the two others may be neglected 
in most cases. 

Above results also testify that resonant modes with 
different combination of the parameters n and l can 
simultaneously exist in a drop.  In principle, each mode 
may initiate the SRS process. 

The problem of competition among resonant modes 
of different orders with the same (or close) resonant 
frequencies in the SRS initiation is complicated. It has 
not yet been clearly understood. It is clear from general 
considerations that modes of lower orders have much 
higher Q$factor. The advantage of higher$order modes 
is their greater extension through the drop, i.e., more 
extended region of their overlap with a pumping field.  
In addition, the order of an excited mode depends on 
the geometry of the experiment.8  It has been found 
that higher$order modes, as a rule, are excited when 
the pumping radiation is focused at the drop center. As 
the focus shifts toward the particle edge, the modes 
with lower order l dominate. 

To derive the SRS energy threshold, we will use 
the integral form of the energy conservation law in a 
closed volume (the Umov$Poynting theorem). In the 
stationary case, the SRS threshold is defined by setting 
the reinforcement of a combination wave equal to its 
total losses in the particle volume: 

 

Pg = Pr + Pa , 
 

where  

Pr = 

c
8π ⌡⌠
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is the average power of radiative losses through the 
drop surface for quasi$monochromatic fields,  
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is the average power of the SRS sources engendered by 
reinforcement of the Stokes wave in the drop, σl is the 
conductance of a drop material, Es and Hs are the 
instantaneous amplitudes of electric and magnetic 
oscillations of the Stokes wave, GR is the amplification 
factor of the Stokes wave, c is the velocity of light, and 
V0 and S0 are the volume and surface area of the drop. 

Then, proceeding from the definition of the Q$
factor of the resonator  

 

Q = 
ωs Ws

P
 ,   Ws = 

ε
8π ⌡⌠

V0

 

 
Es(r, t) E s*(r, t) dV′, 

 

where Ws is the electromagnetic field energy 
accumulated in the resonator and averaged over the 
period of oscillations, P is the power of losses in the 
resonator, and ωs is the resonant frequency, we 
determine the radiative Q$factor (caused solely by 
radiative losses) Qr = ωs Ws/Pr and the Q$factor 
caused solely by absorption 
Qa = ωs Ws/Pa = na ωs/αc (α = 8πσl/c is the volume 
absorption coefficient of a liquid). 

The amplification factor GR for the Stokes wave 
may be written in the stationary regime as 
GR = gs Ii(r), where gs is the Raman amplification 
coefficient, and Ii  is the intensity of the pumping field 
(at cyclic frequency of incident radiation ωi). The last 

can be expressed as Ii = Ii
0 Bi(r), where Bi(r) is the 

factor of the field inhomogeneity in the particle,9 and 

Ii
0 is the intensity of radiation incident on the drop. 

Then, the SRS threshold intensity is expressed as  
 

I
SRS

 = 
na

2 xn
l
 

Qn
l  gs a0

  

⌡⌠

V0
 

 

 
Es(r, t) E s*(r, t) dV′

⌡⌠

V0

 

 
Bi(r) Es(r, t) E s*(r, t) dV′

 , (2) 

 

where 1/Qn
l = 1/Qr + 1/Qa, and xn

l
  is the resonant 

value of the diffraction parameter of the drop. 
Furthermore, let us consider the following 

circumstance. To produce the SRS in the drop, the 
combination frequency ωs should be equal to that of 

any resonant mode (with the frequency ωn
l), and it is 

clear that the spatial distribution of the SRS field also 
should be matched with the spatial field structure for 
this resonant mode. So, in the stationary case, the 
electric vector of the Stokes wave Es(r) may be written 

as the product of a given amplitude Es
0 by a coefficient 

being a function of the spatial coordinate solely, that 
is, 

 

Es(r) = Es
0 B(r) . 

 

Then the ratio of the integrals in the right$hand side of 
Eq. (2) takes the form 
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The coefficient Bc makes sense of the coefficient of 
correlation between the spatial structure of pumping 
and SRS fields in the drop. The larger is the correlation 
coefficient, the less is the threshold intensity ISRS. The 
value of Bc also depends on whether or not the incident 
(pumping) field is in resonance. In the case in which 
the incident field matches with any resonance mode, 
they say about the SRS double resonance,3 i.e., 
resonance for the Stokes wave λs and for the pumping 
wavelength λI in the drop.  It should be noted that 
double resonance is hard to get because of small width 
of resonant lines1 (of the order of 3 cm$1). 

In Fig. 3, the Bc factor is shown for different 
resonant modes.  Our calculations were done for the 

TEn
l oscillations in a water drop at λi =0.532 μm and 

λs = 0.65 μm. 

 
FIG. 3. Dependence of the correlation coefficient Bc of 
pumping and SRS fields in a water drop on the 
diffraction parameter x for different orders of TE 
mode. 

 

Thus, the threshold intensity of incident radiation 
producing the SRS in the spherical drop may be written 
as 

 

I
SRS

 = 
na

2
  

 xn
l

gs Qn
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 . (3) 

 

The threshold values ISRS calculated by Eqs. (1)$
(3) for water drops of various radii (κ ∼ 10$8) are 
shown in Fig. 4. Also shown here are the available  
experimental data on the SRS phenomenon in a unit 
drop3,14,15 of water and ethanol as well as in aerosols.16 
The curves in the figure show the spread of values of 

Qn
l (see Fig. 2) corresponding to the modes  
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with identical resonant frequencies but different n and 
l, which are competitive in the process of SRS 
initiation. As follows from the figure, the SRS 
threshold intensity increases sharply with decrease of 
the drop size, which is connected with a decrease in the 
radiative Q$factor for small drops (see Fig. 2). For 
x ≥ 100, the ISRS is no longer dependent on the radius 
of liquid drops because the Q$factor is limited by 
losses due to the radiation absorption in a liquid. For 
x ≤ 20$40, the SRS may be suppressed by optical 
breakdown arising inside the particle.14  

 
 

FIG. 4. The SRS threshold intensity in transparent 
drops. Experimental data: ethanol drops15 (1), water 
drops16 (2), a water drop3 (3), and water$droplet 
aerosol17 (4). Theoretical calculations: higher$order 
resonance (1) and lower$order resonance (2). Dashed 

curve is for the optical breakdown threshold for the 

ethanol drops.14,18
 

 
Let us make some remarks about the values of gs 

and Qn
l appearing in expression (3). The Raman 

amplification factor gs, as is known, depends on 
physicochemical properties of a liquid13: 

 

gs ∼ 
(dσ/dΩ)R

 

Γs
 , 

 

where (dσ/dΩ)R is the differential cross section of 
Raman scattering, and Γs is the half$width of a line of 
spontaneous Raman scattering. Typical values of qs are 
∼1.3 (ethanol)$3 (benzol) cm/GW (Ref. 1) for large 
volumes of a liquid. High concentration of 
electromagnetic field in the resonator may influence the 
atomic emission properties resulting in an increase in a 
quantum yield of Raman scattering. This effect is 
referred to as the effect of resonant quantum 
electrodynamics.10 As Lin et al.1 have shown, the above 
effect is basically manifested for the given relation 

between the half$width of the SRS line in a drop In
l 

and the frequency separation of individual resonance 
Δn, namely: Γs < Δn. In this case, an increase in the 

Raman amplification coefficient gs is proportional to 
the ratio ks = Δn/Γs and may reach 100$1200. For 
example, half$width of the RS line in a benzol drop 

with a0 = 6.4 μm (λs = 0.56 μm) is Γn
l ∼ 2.6 cm$1 for 

pumping radiation with λi = 0.53 μm. At the same 
time, Δn  ≈ 190 cm$1 and, hence ks = 73. For ethanol 

drop of the same radius and Γn
l ∼ 30 cm$1, the 

coefficient is ks = 6.  With increase of the drop size 
(because Δn ∼ 1/a0, see Ref. 12) as well as for materials 

with high values of Γn
l, the effect of resonant quantum 

electrodynamics is not observed.  
As noted above, distortion of the spherical form of 

a drop (that occurs practically always in actual 
practice) causes sharp degradation of its resonant 
properties and, first of all, its Q$factor. In addition to 
splitting of a resonant mode into a multiplet involving 
(2n+1) modes resulting in the increase of the total 
width of a resonant line Γn, displacement of the drop 
surface results in violation of resonant conditions for 
the SRS. As a result, the energy of electromagnetic 
field (Ws) accumulated in the drop at the SRS 
frequency and hence the Q$factor of the drop decrease. 

For example, the field of TEn resonant mode may 
be written as 
 

⏐Es(r, xn)⏐ ≈ Bn(xn) jn(ka r) Sn(θ) cosϕ  
 

and hence 
 

Ws = ⌡⌠
V

 

 
⏐Es⏐2 dV′ ~ ⏐Bn⏐2 , 

 

where Bn is the Mie coefficient; jn(ka r) is the spherical 
Bessel function; Sn(θ) is the angular function; r, θ, and 
ϕ are the spherical coordinates; and, ka is the modulus 
of the wave vector inside the drop. 

Calculations of Bn(x) near the resonance xn
l have 

shown17 that its dependence is nearly$Lorentz: 
 

Bn(x) = 
Bn(xn

l)
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⎠
⎞x $ xn

l

Γn
l

2
 . 

 

Therefore, when the drop surface is displaced by an 
amount Δa ≥ Γn (Δa « a0), detuning from resonance 
occurs and hence the decrease of Q$factor at the 
frequency of the given mode. 

For example, for thermocapillary oscillations of 
the drop surface, the root$mean$square estimate  

 

Δt = 
kB T
4πγ   

 

can serve as the oscillation amplitude, where kB is 
Boltzmann’s constant, T is the temperature of the drop 
surface, and γ is the surface tension. For water at 
T =300 K, Δt =0.44⋅10$10 m, and for ethanol under the 
same conditions, Δt = 1.35⋅10$10 m. It is clear that the 
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resonant modes, for which Qn
l » a0/Δt, will be 

destroyed by the surface oscillations, while the modes 

with Qn
l ≤ a0/Δt will maintain the SRS process in the 

drop. 
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