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Various methods of measurement of the dissipation rate of the turbulent 

energy by means of a cw Doppler lidar are analyzed in the paper. It is shown that 

information on the dissipation rate can be derived from the structure function or 

the spectrum of wind velocity measured with Doppler lidar having arbitrary length 

of a sounded volume. 
 

INTRODUCTION 

 

Along with measurements of mean wind fields, 
Doppler lidars are used for estimation of the turbulence 
parameters.1–4 In particular, attempts to use the Doppler 
lidars for measurement of the dissipation rate of the 
turbulent kinetic energy and the wind field structure 
constant from measurements of the width of the Doppler 
signal power spectrum were made in Refs. 2–4. However, 
the acceptable accuracy of the data can be achieved only 
for small (of the order of inertia range of turbulence) 
lengths of lidar sounded volume. When the length of the 
sounded volume becomes comparable with the outer scale 
of turbulence, this method fails and hence imposes 
restrictions on the height of measuring with ground–

based cw Doppler lidars. In the paper, a feasibility of 
estimations of the dissipation rate from Doppler lidar 
data for arbitrary length of lidar sounded volume is 
investigated theoretically. 

 

COHERENT DETECTION OF SCATTERED 

RADIATION 

 

Let a cw Doppler lidar be placed in the plane 
z = 0. A laser beam having Gaussian profile and radius 
a0 at the exit from a transmitting–receiving telescope 
propagates along z the axis of the Cartesian coordinates 
r = {z, x, y}. It is focused at a distance R from the 
lidar. Radiation scattered by aerosol particles is 
collected by the telescope and together with a reference 
beam of the same wavelength λ as sounding one is 
incident on a photodetector. The valid component js of 
the current in a photodetector circuit is described by 
the expression in the complex form5–7 

 

js(t)= B ∑
m=1
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where B = 2 e η (hν)
–1 λ PL/PT, e is the electron 

charge, η is the detector quantum yield, hν is the 
 

photon energy, PL is the power of reference beam and 
PT is the power of sounding beam, n is the number of 
aerosol particles in the sounded volume of the 
atmosphere, am is the amplitude of scattering by the 
mth particle located at a point rm at t = 0, 
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is the complex field amplitude of sounding beam, 

g(z) = (1 – z/R) + i z/(k a2
0), and k = 2 π/λ. At 

arbitrary moment the mth particle is at the point 
 

r
~(rm, t) = rm + 

⌡
⌠

0

t
 

 

dt′ V(rm, t′), 

 

where V = {Vz, Vx, Vy} is the vector of particle 
velocity (Lagrange wind velocity). The Lagrange 
velocity and the velocity U(r, t) = {Uz, Ux, Uy} (Euler 
wind velocity) at a fixed point are related by the 
following equation: 

 

V(rm, t) = U(r~(rm, t), t). 
 

DOPPLER SPECTRUM ESTIMATE 

 

A received signal js(t) is fed to a spectrum 
analyzer where it passes through a linear bandpass filter 
with narrow bandwidth Δf. Then a squared modulus or 
modulus of the signal passed through such filter Js(t, f) 
at its central frequency f is averaged over integration 
period t0 to obtain the estimates of spectral power 
density W(t, f) or mean modulus of filtered–out signal 
A(t, f). Let us represent Js(t, f) in the form  

 

Js(t, f) = Δf 
⌡⌠

t–1/Δf

t
 

 

 dt′ js(t′) exp {– 2π i f t′} . (2) 
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Then for estimates W(t, f) and A(t, f) we can write 
the following expressions: 
 

W(t, f) = 
1
Δf

 
1
t0

 
⌡⌠

t–t0

t
 

 

dt′ ⏐Js(t′, f)⏐2 , (3) 

A(t, f) = 
1
t0

 
⌡⌠

t–t0

t

 
 

 

dt′ ⏐Js(t′, f)⏐ . (4) 

 

 

It is known that when Δf τP <  <1 and t0 Δf >  >1, 
where τp is the correlation time of the received signal 
power, the estimate of the mean modulus of the 
signal A(t, f) is proportional to the square root of the 
estimate of the signal power spectrum. It is easy to 
verify when taking into account that distribution of 
the probability density of the quantity Js(t, f) is 

Gaussian with zero mean Js  = 0 and identical 

variances of its independent real and imaginary parts  

σ2
Js
 = t

–1
0 ⌡⌠

t–t0

t

 
 

 

dt′ ⏐Js(t′, f)⏐2  ≡ 0.5 Δf W(t, f) . Here 

the bar denotes averaging over an ensemble of 

realizations am and rm, and the nonstationarity of σ2
Js

 is 

also considered (its dependence on time t) caused by 
slow, compared with the fluctuations of the received 
signal power, turbulent variations of wind velocity 
(correlation time of wind velocity τV >  >τP). In the 
limiting case of extremely large length of sounded 
volume Δz, when Δz >  >LV, where LV is the outer 
scale of turbulence, or of averaging period t0 >  > τV, 

the variance σ2
Js

 under conditions of stationary and 

homogeneous turbulence can be represented as  

σ2
Js

 = 0.5 〈 ⏐Js(f)⏐2 〉, where angular brackets denote 

averaging over an ensemble of wind velocity 
realizations. It can be shown that relative errors of 

estimates under consideration εW= [(W – W
–

)2] 1/2/W
–

 

and εA = [(A – A
–

)2] 1/2/A
–

 are determined by the 

relations: εW = 1/ Δf t0 and εA ~ 1/ Δf t0, where  

A
–

 = ( π/2) [ΔfW
–

]1/2. Thus, for sufficiently large 
number of degrees of freedom (Δf t0 >  > 1) we have 

W ≈ W
–

 ,  A ≈ ( π/2) [Δf W
–

]1/2. If a device measures 
directly the quantity A(f), its power spectrum W(f) can 
be obtained by taking the square of the measured values 
of A. 

The inequality 1/Δf <  <τη = (νk/ε2)
1/2

 ~ 0.1s, 

where τη is the characteristic temporal microscale of 

Lagrangian wind velocity,8 νk is the kinematic viscosity 
of air, and ε2 is the dissipation rate of the turbulent 
energy, allows us to use the approximation 
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0

t+τ
 

 

dt′ Vz(rm, t′) ≈ 
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0

t
 

 

dt′ Vz(rm, t′) + τ Vz(rm, t)  (5) 

in Eq. (1) for ⏐τ⏐ ≤ 1/Δf. 
Having substituted Eq. (1) into Eq. (2) and 

Eq. (2) into Eq. (3), performing averaging in Eq. (3) 
over am and rm, and taking into account Eq.(5) for the 
estimate of the signal power spectrum, we have 
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, (6) 

 

where βπ = σπ ρ is the backscattering coefficient, 

σπ = ⏐am⏐2  is the backscattering cross section, ρ is 

the particle number density (the number of particles in 
a unit volume). 

 

ESTIMATES OF VELOCITY MOMENTS FROM 

THE POWER SPECTRUM 
 

If we make the substitution f = (2/λ)V in 
Eq. (6), where V is the velocity, the normalized power 

spectrum W(t, (2/λ) V)/
⌡⌠

–∞

∞

 

 

dV W(t, (2/λ) V) can be 

considered as a probability density of velocity 
distribution of aerosol particles entering the sounded 
volume during period [t – t0, t]. A frequency fm at 
which the spectrum takes its maximum can be 
approximately considered as corresponding the most 
probable velocity of particles entering the center of 
sounded volume. The spectrum width Δfs determined, 
for example, at 1/2 W(fm), characterizes the degree of 
statistical uncertainty in the estimate of the velocity of 
individual particle (instantaneous velocity at a fixed 
point of sounded volume).  

Along with the power spectrum of valid signal 
W(f), the measured spectrum comprises the spectral 
component W0(f) of near–zero frequency and 
broadband noise spectrum WN(f) throughout frequency 
range f ∈ [0, fN], where fN is the highest frequency of 
a filter set. Eliminating W0(f) and WN(f) from the 
measured spectrum, we can determine arbitrary 
moments of the velocity from the power spectrum of 
valid signal only in the selected frequency range [f1, f2] 
such that f1 < fm < f2 and (f2 – f1) >  > Δfs. 

By virtue of the condition Δf <  < Δfs, turning from 
discrete spectral distribution W(t, l Δf) 
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(l = 0,1,2, …, Ns, where Ns is the number of frequency 
channels, and fN = Δf Ns) to continuous distribution 
W(t, f), we can write down the expressions for the 
first moment of the velocity VD(t) and the second 

central velocity moment V
2

s(t) in the form 
 

VD(t) = S
–1(t) (λ/2) 

⌡
⌠

f1

f2
 

 

df f W(t, f), (7) 

 

V
2
s(t) = S

–1(t) (λ/2)2
 

⌡
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df [f – (2/λ) VD(t)]2 W(t, f),  

  (8) 
 

where 

S(t) = 
⌡⌠

f1

f2
 

 

df W(t, f) (9) 

 

is the signal power. If (f2 – f1) Δf <  <(Δfs)
2 and  

Δfs <  < f2 – f1, we substitute Eq. (6) into Eqs.(7)–(9) 
and take the limits Δf → 0, f2 → + ∞ , and f1 → –∞ . As a 
result, after integrating over variable f we have 
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where F(r, t) = B
2
 t
–1
0  βπ(r, t) ⏐E

2(r)⏐2, G(r, t – t′) = 

= F(r, t – t′) S
–1(t). 

The noise component of measured photocurrent 
power spectrum WN(f) in the frequency range 
f ∈ [f1, f2] can be represented as a sum of the mean  

 

W
–

N = (f2 – f1)
–1 
⌡⌠

f1

f2

 

 

df WN(f)  

 

and fluctuation component  
 

W ′
N(f) = W(f) – WN .  

 

The latter is responsible for spikes in the measured 
spectrum distribution, whose amplitude may be 
comparable to the amplitude of valid signal for small 
signal–to–noise ratio. Thus, generally using Eqs.(7)–
(9) to determine the moments of the velocity, we 

should obtain VD(t) + ΔVD(t) and V
2
s(t) + ΔV

2
s(t), 

where ΔVD(t) and ΔV
2
s(t) are the errors in estimates of 

VD(t) and V2
s(t) caused by noise, rather than VD(t) 

and V2
s(t). In what follows we assume that the signal–

to–noise ratio is sufficiently large and we can neglect 

errors ΔVD and ΔV
2
s. 

In practice, we can put βπ = const in Eqs.(10)–

(12). Then for stationary and homogeneous turbulence, 
with integration time t0 being so large that the 

condition t0 >  >τV is fulfilled, the estimates VD and V2
s 

comprise the mean 〈Vz〉 and the variance σ2
r = 

= 〈V2
z〉 – 〈Vz〉

2 of the radial component of wind 
velocity. However, for lidar systems, as a rule, 

t0 . 50 ms (Refs. 9–11), and correlation time of wind 
velocity τV ∼ 10 s far exceeds t0. That is why we can 
put t0 → 0 in Eqs.(10)–(12). 

Using Taylor's hypothesis of frozen turbulence 
 

Vz(r, t) = Uz(r + t <V>, 0) 
 

and taking into account that radii of sounding laser 
beam are small, which allows us to put 

 

Vz = Uz(z + t <Vz>, t <Vx>, 0, 0) (<Vy> = 0) 
 

in Eqs.(10)–(12), for R <  < k a2
0 we can derive from 

Eqs. (10)–(12) simpler formulas 
 

VD(t) = 
⌡⌠

0

∞

 

 

dz Qs(z) Vr(z, t) , (13) 

V
2
s(t) = 

⌡⌠

0

∞

 

 

dz Qs(z) V
2
r(z, t) – V2

D(t) , (14) 

 

where Vr(z, t) = Uz(z + t <Uz>, t<Ux>, 0, 0),  

and Qs(z) = {πk a
2
0 [(1 – z/R)2 + z2/(ka2

0)
2]}

–1  

is the function characterizing the spatial resolution of a 
lidar.5,6,12 If we define the effective length of sounded 
volume as 
 

Δz = 
⌡⌠

0

∞

 

 

dz Qs(z)/Qs(R) , 

for R <  < k a2
0 it takes the form 

 

Δ z = (λ/2) (R2/a
2
0). (15) 

 

DETERMINATION OF THE TURBULENT ENERGY 

DISSIPATION RATE FROM  

THE SECOND CENTRAL MOMENT  

OF THE VELOCITY 
 

Assuming homogeneity and isotropy of the field of 
wind velocity fluctuations, after ensemble averaging of 
the second central moment of the velocity (squared 
width of the signal power spectrum), from Eq. (14) for 

σ2
s = 〈V2

s〉 we have 
 

σ2
s = σ2

r – σ 2
D , (16) 

 

where 
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σ 2
D = <[VD – <VD>]2> =  

= 
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⌡⌠
 

 

0

∞

dz1 dz2 Qs(z1) Qs(z2) Br (z1 – z2) (17) 

 

is the variance of the velocity measured with the 
Doppler lidar, Br (z1 – z2) = <V′r(z1) V′r(z2)> is the 
correlation function of the radial wind velocity 
component, and V′r = Vr – <Vr> (<Vr> ≡ <Vz> = <VD>).  

Let us define the spatial scale of velocity 
correlation (outer scale of turbulence) LV by the 
integral  

 

LV = 
⌡⌠

0

∞

 

 

dz′ Br(z′)/σ2
r . (18) 

 

Then representing the correlation function Br in the 
form 

 

Br(z′) = 
⌡⌠

–∞

+∞
 

 

dκ Sr(κ) eiκz′, (19) 

 

where Sr(κ) is the one–dimensional longitudinal 
spectrum of radial wind velocity fluctuations, from 
Eqs.(18) and (19) we can obtain  
 

LV = π Sr(0)/σ2
r . (20) 

 

In accordance with Eqs.(17) and (19), the variance σ 2
D 

can be represented as 
 

σ 2
D = 

⌡⌠

–∞

+∞
 

 

dκ Sr(κ) H(κ), (21) 

 

where H(κ) = ⏐
⌡⌠

0

∞

 

 

dz Qs(z) e
iκz⏐2 is the transfer 

function of low–frequency spatial filter determined by 
the distribution of laser beam intensity along the 

propagation axis. With k a2
0 >  >R, for H(κ) we have 

 

H(κ) = exp {– (2/π) Δz ⏐κ⏐}. (22) 
 
From Eqs.(16), (19), (21), and (22) we obtain the 
following expression : 

 

σ2
s = 

⌡⌠

–∞

+∞
 

 

dκ Sr(κ) [1 – exp {– (2/π) Δz ⏐κ⏐}]. (23) 

 

For Δz <  < LV for Sr(κ) we can use the Kolmogorov–

Obukhov spectrum model8 

 

Sr(κ) = {C ε2/3
2 /[3 Γ (1/3)]} ⏐κ⏐

–5/3, (24) 
 

where C ≈ 1.83 is the Kolmogorov constant, and Γ(x) 
is the gamma function. Having substituted Eq. (24) 

into Eq. (23) and integrated over variable κ we obtain 
the expression 

 

σ2
s = C (2/π)2/3 (ε2 Δz)2/3. (25) 

 

Thus, by measuring (for Δz <  <LV) the parameter σ2
s, we 

can determine the dissipation rate of the turbulent 
energy ε2 using formula (25). 

In the case of large sounded volume, when  
Δz >  > LV, we can put in Eq. (23)  

 

⌡⌠

–∞

+∞
 

 

dκ Sr(κ) = σ2
r  

and 

⌡⌠

–∞

+∞
 

 

dκ Sr(κ)exp{–(2/π) Δzκ⏐} ≈ 

≈ S(0)
⌡⌠

–∞

+∞
 

 

dκ exp{–(2/π)Δz⏐κ⏐}.  

 

As a result, in view of Eq. (20), we obtain the 
formula 

 

σ2
s = σ2

r [1 – LV/Δz], (26) 
 

from which it follows that as Δz/LV → ∞, σ2
s saturates 

at a level σ2
r. 

Based on Eq. (14), we define the relative variance 
of squared width of the signal power spectrum  

 

ε2
s = <[(V2

s – σ2
s)]

2>/σ4
s.  

 

The obtained expression for ε2
s contains the fourth 

moment of the velocity difference Vr(z1) – Vr(z2) 
whose probability distribution, as is known from 
Ref.13, is non–Gaussian. Nevertheless, for a rough 
estimate we use the hypothesis by Millionshchikov8 to 
represent the fourth moment of the velocity difference 
as a product of its second moments. As a result, we 
have 
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2
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dκ1 dκ2 Sr(κ1) Sr(κ2) × 
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⎦
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⎩
⎨
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⎭
⎬
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Δz
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⎩
⎨
⎧

⎭
⎬
⎫

– 

Δz

π  (⏐κ1⏐ + ⏐κ2⏐)
2

,  

 (27) 
 

where σ2
s is described by formula (23). 

As calculations show, for Δz <  < LV, when we can 
use formula (24) for Sr(κ) in Eq.(27), εs ≈ 0.5. In the 
other limiting case Δz >  > LV, we can neglect the second 

exponent in Eq.(27) and put σ4
s ≈ σ4

r. As a result, we 
obtain the approximate formula  

 

εs = μ LV/Δz ,  (28) 
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where the coefficient  
 

μ = 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤

2
⌡⌠

–∞

+∞
 

 

dξ S2
r(πξ/LV)/S

2
r(0)

1/2

 

 

for the von Karman model of the spectrum Sr(κ) 
(Ref. 14) equals 0.93. Thus relative fluctuations of 
estimate of the parameter Vs

2 from a single power 
spectrum of the signal are maximum when Δz <  < LV 
and decrease monotonically with increasing length of 
sounded volume Δz. 

 
DETERMINATION OF THE DISSIPATION RATE 

OF THE TURBULENT ENERGY FROM THE 

STRUCTURE FUNCTION AND SPECTRUM OF 

THE FIRST MOMENT OF DOPPLER VELOCITY 

 
The rate of turbulent energy dissipation ε2 can be 

determined from measurements of the mean squared 
width of the signal power spectrum only when the 
length of sounded volume is small compared with the 
outer scale of turbulence: Δz <  < LV. Despite increasing 
outer scale of turbulence LV with height h (in 
particular, in the surface layer the linear growth of LV 
is observed, and above this layer its rate of growth is 
slowed down15) the length of sounded volume Δz is 
proportional to R2, as follows from Eq. (15), and 
consequently may increase with height faster than LV 
even for directions of beam propagation close to 
vertical. Therefore, for ground–based lidar 
measurement the condition Δz <  < LV is violated 
beginning with a certain height, and consequently the 
Doppler spectrum width is no longer informative of the 
quantity ε2. 

Let us analyze the feasibility of determining the 
turbulent energy dissipation rate from the structure 
function 

 

D(τ) = <[V ′D(t + τ) – V ′D(t)]2> (29) 
 
and spectrum 
 

SD(ω) = 
1
2π 

⌡⌠

–∞

+∞
 

 

dτ <V ′D(t + τ) V ′D(t)> e#iωτ  (30) 

of wind velocity measured by a Doppler lidar, where  

V ′D = VD – <VD>. 
Having substituted Eq. (13) into Eq. (29) and 

averaged we obtain, taking into account Eq. (22), the 
formula 

 

D(τ) = 
⌡⌠

 

 

⌡⌠

–∞

+∞
 

 

⌡⌠
 

 

dκz dκx dκy Fz(κ) exp 
⎩
⎨
⎧

⎭
⎬
⎫

– 
2
π Δ z ⏐κz⏐  × 

 

× [1 – exp {i κz <Vz>τ + i κx <Vx>τ}], (31) 
 

where Fz(κ) is the three–dimensional spatial spectrum  

of fluctuations of radial component of wind velocity, 
and κ = {κz,κx,κy}. In the inertia subrange of wave 
numbers when ⏐<V>τ⏐ <  < LV(<V> = {<Vz>,<Vx>,0}), 
we can use in Eq. (31) for Fz(κ) the expression of the 
form8 
 

Fz(κ) = 

1
4π 

55
27 Γ (1/3)

 ε2/3
2  ⏐κ⏐

–11/3
 

⎝
⎛

⎠
⎞1 – 

κ2
z

⏐κ⏐2  . (32) 

 

After substitution of Eq. (32) into Eq. (31), 
change of the variables κz = κ sinϕ and κx = κ cosϕ,  
and integration over κy and κ, we have  

 

D(τ) = C1ε2/3
2 (Δz)

2/3

⌡⌠

0

π

 

 

dϕ ⎣
⎡

⎦
⎤1 – 

8
11

 sin2 (ϕ – γ)  × 

× 
⎣
⎡Re ⎝

⎛⏐sin(ϕ
 
–

 γ)⏐+ ⎠
⎞i 

π
2
 sinϕ ⏐<V>τ⏐/Δz

2/3
 – 

– ⎦
⎤ ⏐sin(ϕ

 
–

 
γ)⏐2/3  , (33) 

 

where γ = arcsin(<Vx>/⏐<V>⏐) is the angle between 
the beam axis and the wind direction, 

C1 = (2/π)2/3
 55 Γ (1/3) C/[54 πΓ (11/6)] ≈ 1.2 C. 

Note that formula (33) is inapplicable if the conditions 
 

Δz/⏐<Vz>⏐ >  > τη and ⏐<Vx>⏐ < σx, (34) 
 

where σ2
x = <V

2
x> – <Vx>2, both are fulfilled 

simultaneously. 
For Δz <  < ⏐<V> τ⏐ <  < LV in Eq. (33) we can take 

Δz → 0 (regime of point sounded volume), and D(τ) is 
described by the well–known expression8 

 

D(τ) = C [1 + (1/3) sin2γ] ε2/3
2  ⏐<V>τ⏐2/3. (35) 

 

In the other limiting case in which  
⏐<V> τ⏐ <  < Δ z <  < ⏐τ <V>/sinγ⏐ (regime of large 
sounded volume with the beam axis aligned with the 
wind direction (γ = 0)), from Eq. (33) we have the 
asymptotic formula 

 

D(τ) = (2/9) (π/2)4/3
 C ε2/3

2  (Δ z)
–4/3 ⏐<Vz>τ⏐2. (36) 

 

In this case conditions (34) can be fulfilled 
simultaneously. 

For Δ z >  > ⏐τ <V>/sinγ⏐ (regime of large sounded 
volume with cross wind (γ ≠ 0)), from Eq. (33) we 
obtain 

 

D(τ) = C2 ε
2/3
 2  ⏐<Vx>τ⏐5/3 / Δ z , (37) 

 

where C2 = 11 3π Γ (1/3) C/[36 Γ (11/6)] ≈ 2.67 C. 

When the condition <Vx>
2 >  > σ2

x is additionally 
fulfilled, formula (37) can be applied for arbitrary Δz 
including Δz >  > LV. Thus, in the case of strong cross 
wind the dissipation rate of the turbulent energy can be 
estimated from Doppler lidar data for arbitrary length 
of the sounded volume Δz. The necessary information 
on <Vx> can be obtained by the velocity–azimuth–

display scan technique.9–12 
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Manipulations analogous to that used to derive 
Eq. (33) yield the formula for spectrum SD(ω) which 
in its high–frequency region ω >  > ⏐<V>⏐/LV takes 
the form 

 

SD(ω) = Sr(ω) H(ω), (38) 
 

where  
 

Sr(ω) = (C/[3 Γ (1/3)]) × 
 

× [1 + (1/3) sin2γ] ε2/3
2  ⏐<V>⏐2/3 ω

–5/3  
is the temporal spectrum of radial wind velocity at a 
fixed point (z = R), 
 

H(ω) = 

55
27

 
1

4 π
 
Γ(1/3)

Γ(11/6)
 ⎝
⎛

⎠
⎞1 + 

1
3

 sin2γ
–1

 ×
 

× 
⌡⌠

–∞

+∞
 

 

dξ(1+ξ2)
–4/3 

⎣
⎢
⎡

⎦
⎥
⎤1 – 

8
11

 
(cosγ + ξ sinγ)2

1 + ξ2  × 

× exp 
⎩
⎨
⎧

⎭
⎬
⎫

– 
2
π 

Δ z ω
⏐<V>⏐ ⏐cosγ + ξ sinγ⏐  (39) 

 

is the transfer function of a low–frequency temporal 
filter. The applicability of Eq. (38) is restricted by 
conditions (34) as well. 

From Eq. (39) it follows that when Δz → 0,  
the function H(ω) → 1. When γ → 0,  
H(ω) → exp{–(2/π)Δzω/⏐<V>⏐}. In the case of 

principal practical interest Δz >  > ⏐<V> ω
–1/sinγ⏐ 

(regime of large sounded volume with cross wind), the 
integrand in Eq. (39) is equal to 

π ⏐<V>⏐ ⏐sinγ⏐5/3 (Δz ω)
–1. In this case, the 

spectrum SD(ω) is described by the formula 
 

SD(ω) = C3 ε
2/3
2  ⏐<Vx>⏐5/3 ω

–8/3/Δz, (40) 
 

where C3 = 55 π C/[324 Γ (11/6)] ≈ 0.32 C. Using 
Eq. (40), we can determine ε2 from spectrum SD(ω) 
measured for Δz > LV. 

 

CONCLUSION 

 

A feasibility to determine the dissipation rate of 
the turbulent energy for arbitrary length of sounded 
volume from Doppler lidar measurements of the 
structure function or the spectrum of wind velocity 
has been demonstrated theoretically. It has been 
found that for large sounded volume and strong cross 
wind the structure function D(τ) is proportional  
 

to τ5/3, and the spectrum SD(ω) is proportional  
to ω–8/3. Obtained results provide a basis for 
developing efficient methods of reconstruction of 
vertical profiles of the rate of dissipation at the 
turbulent energy throughout the entire boundary 
layer of the atmosphere with the use of ground–based 
Doppler lidar. 
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