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In this paper, we suggest a relatively simple radiation treatment of the 
broken cloud field problem. The underlying equations are based upon a Markovian 
model, which treats this radiative transfer problem by a stochastic formalism. 
Specifically, the partially cloudy atmosphere is treated as a two-component (clouds 
and clear sky) mixture, which is described by a set of two coupled deterministic 
equations for the ensemble-averaged intensity. For Markovian statistics, these 
equations are exact in a purely absorbing mixture, and are reasonably accurate and 
very robust in the general case including scattering. This description can also be 
modified to account for non-Marcovian statistics. We show that in two different 
asymptotic limits this set of two coupled equations can be renormalized to a single 
radiative transfer equation, involving effective atmospheric properties. These two 
limits correspond to a nearly transparent atmosphere and small correlation length 
mixing statistics. General spatial dependences of cloud and clear sky properties, as 
well as inhomogeneous and anisotropic statistics, are allowed in the formalism. 

 
1. INTRODUCTION 

 
It is widely accepted that the interaction of 

thermal radiation with clouds is an important factor in 
the determination of the earth’s climate. Such 
considerations must be incorporated into general 
circulation models of the atmosphere if these models are 
to predict accurately long-term climate trends. 
Discussion of this can be found in the papers of 
Stephens,1 Ramanathan et al.,2 Stephens et al.,3 and 
the references therein. The pertinent equation of 
radiative transfer in this context is 

 
Ω⋅∇I(r, Ω) + σ′(r)I(r, Ω) = LI(r, Ω) + S(r), (1) 
 

where L is the scattering operator defined by 
 

LI(r, Ω) = σ′s(r) ⌡⌠
4π

 
 dΩ′f(r, Ω′⋅Ω)I(r, Ω),  (2) 

 

and S(r) is the (isotropic) emission source given by 
 

S(r) = σa(r)B[T(r)]. (3) 
 
Here I(r, Ω) is the specific intensity of radiation at 
spatial point r in the direction Ω, σ′s(r) is the scattering 
cross section, σa(r) is the absorption cross section 
corrected for induced emission, σ′(r) = 
= σ′s(r)+σa(r), and B[T(r)] is the Plank function at 
temperature T(r). The function f(r, Ω′⋅Ω) describes the 

redistribution in the angle associated with the 
scattering process, and has the normalization 

 

⌡⌠
4π

 
 dΩ'f(r, Ω′⋅Ω) = 2π ⌡⌠

$1

1

 
 dξf(r, ξ) = 1. (4) 

 

The physics of Eqs. (1) through (4) is time-
independent radiative transfer in an isotropic medium 
assumed to be in local thermodynamic equilibrium, 
with photon scattering taken as conservative (a photon 
does not change frequency upon scattering). Equation 
(1) is thus a monochromatic equation of transfer, valid 
at each frequency ν. For simplicity of notation, we 
have not indicated this frequency variable that is 
simply a parameter in Eq. (1). Henceforth, we shall 
also drop, again for simplicity of notation, the spatial 
variable r in the argument list of all functions. 

The problem in using Eq. (1) directly in the 
broken cloud field context is twofold. First, the size 
of any individual cloud is generally much smaller 
than the grid size in a typical general circulation 
model numerical simulation. Thus, one is faced with a 
subgrid modeling problem. Second, the location and 
geometry of each individual cloud are not known in 
the usual deterministic sense. Thus, Eq. (1) is a 
stochastic equation of transfer, with the four 
atmospheric radiative transfer properties appearing in 
this equation, namely σ′, σ′s, f, and S, all random 
variables. If we consider the broken cloud field as a 
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stochastic mixture of two immiscible materials, namely 
clouds and clear sky, these properties are discrete, two-
state random variables. It then follows that the specific 
intensity of radiation I is a (continuous) random 
variable, and the primary quantity of interest is the 
ensemble-averaged intensity 〈I〉. 

Treating the cloud-radiation interaction problem 
by a statistical formalism has been suggested by several 
authors, including Titov,4 Stephens et al.,3 Malvagi et 
al.,5 and Malvagi and Pomraning.6 One relatively 
simple model, whose origin is in the linear transport 
and kinetic theory community,7 has in particular been 
suggested to compute 〈I〉. This model, which is based 
upon Markovian mixing of two atmospheric components 
(clouds and clear sky), is in the form of two coupled 
differential equations of radiative transfer. An integral 
formulation of this same model has been proposed by 
Titov.4 This model, while a relatively simple 
deterministic replacement for the stochastic description 
given by Eq. (1), is still complex from a calculational 
viewpoint. It involves two coupled equations that must 
be solved simultaneously to find the ensemble-averaged 
intensity 〈I〉. The purpose of this paper is to show that 
under certain circumstances, these two coupled 
equations can be reduced to a single renormalized 
equation of radiative transfer of the conventional form 
given by Eq. (1), but with effective, deterministic 
atmospheric properties σ′eff, Leff, and Seff. These 
effective parameters incorporate the properties of each 
atmospheric component (clouds and clear sky) at each 
space point r, as well as the statistics of this two-
component mixture (cloud size and spacing 
information). The properties of each component of this 
binary mixture are allowed arbitrary spatial 
dependences, and the mixing statistics are allowed to 
be inhomogeneous (space dependent) and anisotropic 
(direction dependent). 

The two circumstances under which 
renormalization is possible correspond to two distinct 
asymptotic limits, namely: (1) the nearly transparent 
limit and (2) the small correlation length limit. In 
the first case, we envision a small amount of 
relatively opaque material (all cross sections large) 
admixed with a large amount of relatively transparent 
material (all cross sections small). In the second case, 
we envision a small correlation length problem, 
which implies clouds and/or cloud spacing, measured 
in photon mean free paths. Appropriate scalings are 
introduced into the Markovian two-equation model to 
reflect each of these two physical situations, and 
asymptotic expansions then give a single renormalized 
equation of transfer in each instance. 

The remainder of this paper is organized as 
follows. The next section discusses the two-coupled-
equation model for 〈I〉 which forms the starting point 
for our renormalization analysis. As mentioned 
earlier, arbitrary spatial dependences of all quantities 
as well as directionally dependent statistics are 
allowed. In this section, we also introduce the 
transport cross section philosophy that removes 

anisotropic scattering from Eq. (1). The two-equation 
deterministic model for this simplified isotropic 
scattering stochastic equation of transfer is also 
discussed. Section 3 develops the asymptotic 
formalism associated with the nearly transparent 
limit, and Section 4 considers the analogous 
treatment for the small correlation length asymptotic 
limit. The final section of the paper is devoted to a 
few concluding remarks. 

 
2. THE STOCHASTIC MODEL 

 
The ensemble-averaged specific intensity of 

radiation in a two-component stochastic mixture, with 
the components identified by subscripts 0 and 1 is 
clearly given by 

 

〈I(Ω)〉 = p0 I0(Ω) + p1 I1(Ω).  (5) 
 

Here pi is the probability of finding material i at space 
point r, and Ii(Ω) is the conditional ensemble average 
of the intensity, conditioned upon material i being at 
space point r. In the case of Markovian mixing, a 
simple model for the Ii has been proposed by several 
authors, using a variety of arguments to arrive at the 
same model. These arguments include using the 
Liouville master equation,8 employing an upwind 
closure to a stochastic balance equation,9 using neutron 
transport noise ideas,10 and invoking an independent 
path length assumption.11 The Markovian mixing 
assumption is embodied in the equation 

 

Prob(i → j) = ds/λi(s),  j≠ i. (6) 
 

The content of this equation is that as a photon 
traverses the binary mixture in the direction Ω (s is a 
spatial coordinate in this direction), the probability 
Prob (i→j) of making a transition from material i to 
material j, given that material i is present at position s, 
in a distance ds is simply proportional to ds, with the 
proportionality constant being the inverse of the 
Markovian transition length λi(s). In general, the λi 
depend upon both r and Ω, and the pi(r) and λi(r, Ω) 
are related by the forward form of the Chapman-
Kolmogorov equations given by7 

 

dpi 
ds  = 

pj 
λj

 $ 
pi 
λi

 ,  j ≠ i.  (7) 

 

For physical realizability, the Ω dependences of the λi 
must be such that the pi are independent of Ω. For 
homogeneous statistics, the λi depend only upon Ω. In 
this case λi(Ω) is the mean chord length of material i in 
direction Ω, and Eq. (7) yields 

 

pi = 
λi(Ω)

 
λ0(Ω) + λ1(Ω)  (8) 

 

Further, in this case the chord length distribution in 
each material is a classic Poisson distribution in each 
direction Ω, namely exponential with mean λi(Ω). If 
the λi are independent of Ω, the statistics are said to be 
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isotropic. However, in the broken cloud field context, 
it is important to retain the Ω dependences of the λi, 
since clouds generally have different mean chord 
lengths in different directions. Our considerations allow 
an arbitrary Ω dependence of λi. 

The two coupled equations for the Ii, which have 
been suggested as a reasonable model describing 
radiative transfer in a binary Markovian mixture,  
are7$11 

 

(Ω⋅∇ + σ′i)piIi(Ω) = 

= Li pi Ii(Ω) + pi Si + 
pj 

Ij(Ω)

λj(Ω)  $ 
pi 

Ii(Ω)

λi(Ω)  ,   j ≠ i. (9) 

 

Here the subscript i on σ′, L, and S indicates that these 
quantities are applicable to the ith material, with 
i = 0, 1 in our binary mixture. These equations are 
exact for a purely absorbing mixture,12 and quite 
accurate and very robust when scattering is present.9,13 
An integral form of these equations has been presented 
by Titov.4 These two equations can be written in an 
equivalent form by making a dependent variable change 
from I0 and I1 to 〈I〉 and χ according to 

 

〈I〉 = p0 I0 + p1 I1, (10) 
 

χ = p0 p1 (I0 $ I1).  (11) 
 

We find the two equations, making use of Eq. (7), 
 

[Ω⋅∇ + 〈σ′〉]〈I(Ω)〉 + ν′χ(Ω) = 〈S〉 + 〈L〉〈I(Ω)〉 + Kχ(Ω),  
(12) 

 

[Ω⋅∇ + σ̂′(Ω)]χ(Ω) + ν′〈I(Ω)〉 = T + Jχ(Ω) + K〈I(Ω)〉.  

(13) 
Here we have defined the parameters 
 

〈σ′〉 = p0 σ′0 + p1 σ′1 ,  (14) 
 

σ̂′(Ω) = p0 σ′1 + p1 σ′0 + 
1

λc(Ω) ,   (15) 
 

ν′= p0 p1(σ′0 $ σ′1),    (16) 
 

〈S〉 = p0 S0+ p1 S1,  (17) 
 

T = p0 p1(S0$ S1), (18) 
 

and the operators 
 

〈L〉 = p0 L0+ p1 L1, (19) 
 

J = p0 L1+ p1 L0,    (20) 
 

K = p0 p1 (L0$ L1). (21) 
 

The quantity λc(Ω) in Eq. (15) is the correlation 
length for these Markovian statistics, given by7  

 

2
λ“(Ω) = 

1
p1 λ0(Ω) + 

1
p0 λ1(Ω) .  (22) 

 

A simplified equation of transfer often employed in 
radiative transfer calculations is one involving isotropic 
scattering. That is, Eq. (1), which describes general 
anisotropic scattering, is replaced with an equivalent 

(in a sense to be made precise shortly) isotropic 
scattering equation. This equation is14,15 

 

Ω⋅∇I(Ω) + σI(Ω) = 
σs 
4π ⌡⌠

4π

 
 dΩ′ I(Ω′) + S,  (23) 

where 
 

σs = σ′s (1 $ μ$),   σ = σs + σa.  (24) 
 

Here μ$ is the average value of the scattering cosine (the 
asymmetry factor) given by 

 

μ$ = 2π ⌡⌠
$1

1

 
 dμ μ f(μ).    (25) 

 

Equations (1) and (23) are equivalent in the sense that 
they yield the same classic diffusion equation for E, 
defined as 

 

E = ⌡⌠
4π

 
 dΩ�I(Ω).   (26) 

 

This quantity E is simply the product of the speed of 
light and the radiation energy density (per unit 
frequency). This common diffusion equation for E is 
given by14,15 

 

$∇⋅(1/3σ)∇E + σa E = 4 π S.   (27) 
 

If Eq. (23) is interpreted as a stochastic equation 
describing radiative transfer in a binary Markovian 
mixture, one has the corresponding model equations for 
the Ii(Ω) given by 

 

(Ω⋅∇ + σi)pi Ii(Ω) = 
σsi 
4π  ⌡⌠

4π

 
 dΩ′pi Ii(Ω′) + 

+ pi Si + 
pj 

Ij(Ω)

λj(Ω)  $ 
pi 

Ii(Ω)

λi(Ω)  ,  j≠i.  (28) 

 

Under the charge of variables given by Eqs. (10) and 
(11), an equivalent set of equations is  

 

[Ω⋅∇ + 〈σ〉] 〈I(Ω)〉 + ν χ(Ω) = 

= 〈S〉 + 
1
4π ⌡⌠

4π

 
 dΩ′ [〈σs〉〈I(Ω′)〉 + νs χ(Ω′)],  (29) 

 

[Ω⋅∇ + σ̂(Ω)] χ(Ω) + ν 〈I(Ω)〉 = 

= T + 
1
4π ⌡⌠

4π

 
 dΩ′ [σ̂s χ(Ω′) + νs 〈I(Ω′)〉]. (30) 

 

Here 〈S〉 and T are given by Eqs. (17) and (18), and 
additionally we have defined 

 

〈σ〉 = p0 σ0 + p1 σ1, (31) 
 

σ̂(Ω) = p0 σ1 + p1 σ0+ [1/λc(Ω)], (32) 
 

ν = p0 p1 (σ0 $ σ1),  (33) 
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〈σs〉 = p0 σs0 + p1 σs1, (34) 
 

 

σ̂s= p0 σs1 + p1 σs0,  (35) 
 

νs = p0 p1 (σs0 $ σs1).  (36) 
 

The next two sections of this paper develop the 
two asymptotic limits referred to earlier, utilizing both 
Eqs. (12) and (13), and Eqs. (29) and (30), as the 
starting point. These two limits are the nearly 
transparent limit discussed in the next section, and the 
small correlation length limit treated in the section 
after that. In the case of Eqs. (12) and (13), we find a 
renormalized equation of transfer for 〈I〉 in both limits 
given by 

 

Ω⋅∇〈I(Ω)〉 + σ′eff(Ω)〈I(Ω)〉 = 
 

= Leff〈I(Ω)〉 + Seff(Ω), (37) 
 

with different effective properties for each of the two 
asymptotic limits. Similarly, using Eqs. (29) and (30) 
as the basis for the analysis, the normalized equation of 
transfer is written 

 

Ω⋅∇〈I(Ω)〉 + σeff(Ω) 〈I(Ω)〉 = 
 

= 
1
4π ⌡⌠

4π

 
 dΩ′[〈σs, eff(Ω′, Ω)〈I(Ω′)〉 + Seff(Ω).  (38) 

 

In each asymptotic limit, we obtain explicit and 
relatively simple expressions for σ′eff, Leff, Seff, σeff, and 
σs, eff. Thus, our analysis yields effective properties, 
accounting for the statistic nature of the problem, 
which are to be used in the classic deterministic 
equation of transfer. One complication, as can be seen 
from the appearance of the argument Ω in the various 
terms in Eqs. (37) and (38), is that these effective 
properties involve angular dependences not present in 
the corresponding properties of each component of the 
mixture. These angular dependences arise from the 
angular dependences of the Markov transition lengths 
λi(Ω). In the case of isotropic statistics (λi independent 
of Ω), we will find that these unusual angular 
dependences are not present. However, in the broken 
cloud field context, the angular dependence of λi(Ω) is 
needed to account for the directionally dependent mean 
cloud chord length. 

Finally, we note that the two-equation models 
summarized here, namely Eqs. (12) and (13), and 
Eqs. (29) and (30), are only strictly applicable to 
Markovian statistics as defined by Eq. (6). It has been 
suggested, however, that these models can be used in 
the case of certain non-Markovian statistics by 
modifying the correlation length λc(Ω) found in 
Eqs. (15) and (32) (see Ref. 16).  This class of 
statistics is referred to as renewal statistics, defined by 
chord length distributions. If the chord length 
distribution for chord length τ (in direction Ω) in 
material i is denoted by gi(τ), we define Gi(τ) as 
 

Gi(τ) = ⌡⌠
τ

∞
 
 dτ′ gi(τ′).  (39) 

 

The simple interpretation of Gi(τ) is that it is the 
probability that a chord length in material i will exceed 

the length τ. We next define G~ i(σi) as  
 

G~ i(σi) = ⌡⌠
0

∞
 
 dτ e

$σiτ Gi(τ). (40) 

 

This is just the Laplace transform of Gi(τ) evaluated at 
the transform variable equal to σi. In the terms of the 

G~ i, we introduce the factor q given by  
 

q = 
1
σ0

 
⎣⎢
⎡

⎦⎥
⎤1

G~ 0(σ0)
 $ 

1
λ0

 + 
1
σ1

 
⎣⎢
⎡

⎦⎥
⎤1

G~(σ1)
 $ 

1
λ1

 $ 1.    (41) 

 

According to Levermore et al.,16 the Markovian two-
equation models given by Eqs. (12) and (13), and 
Eqs. (29) and (30), will then constitute reasonable 
models for non-Markovian renewal statistics defined by 
the distribution gi(τ) if the replacement 

 

λc → q λc  (42) 
 

is made. For (homogeneous) Markovian statistics we 
have7 

 

gi(τ) = 
1
λi

 e$τ/λi ,  (43) 
 

which yields 
 

Gi(τ) = e$τ/λi , (44) 
 

and 
 

G~ i(σi) = λi/(1 + σi λi). (45) 
 

In this case, Eq. (41) gives q = 1, and the general non-
Markovian model properly reverts to the Markovian 
model. For inhomogeneous renewal statistics, i.e., if the 
gi(τ) are spatially dependent, this correction factor q 
would be spatially dependent, but conceptually this 
causes no difficulties. This simply adds an additional 
spatial dependence to λc that already is allowed an 
arbitrary dependence. 

 
3. THE NEARLY TRANSPARENT LIMIT 

 
We take as our starting point the two-equation 

description given by Eqs. (29) and (30). These are the 
transport-corrected stochastic model equations. We 
assume that one of the materials, say material zero, is 
present in small quantities (p0<  < 1), and that this  
material is relatively opaque, in that σs0 and σa0 are 
large compared to σs1 and σa1. We quantify this by 
introducing the scalings 
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!0→ ε2 !0,   σs0→ σs0/ε2,   σa0= σa0/ε2,   (46) 
 

 

where ε is the formal smallness parameter, to be set to 
unity at the end of our considerations. The 
corresponding material one quantities are taken as 
O(1). From these scalings, we deduce from Eq. (7) 
that λ0 scales as ε2, and Eqs. (3) and (24) allow us to 
conclude that S0 and σ0 scale as 1/ε2. The quantities 
λ1, S1, and σ1 are all O(1). Finally, the above scalings 
lead to the results that 〈S〉, 〈σs〉, and 〈σ〉 are O(1) 
quantities; λc scales as ε2; T, νs, and ν scale as 1/ε, 
and σ̂s, and σ̂ scale as 1/ε2. Introducing these scalings 
into Eqs. (29) and (30), we find 
 

[Ω⋅∇ + 〈σ〉] 〈I(Ω)〉 + 
ν
ε χ(Ω) = 

 

= 〈S〉 + 
1
4π ⌡⌠

4π

 
 dΩ′[〈σs〉 〈I(Ω′)〉 + 

νs 
ε  χ(Ω′)], (47) 

 

⎣
⎡

⎦
⎤Ω⋅∇ + 

σ̂(Ω)
ε2  χ(Ω) + 

ν
ε 〈I(Ω)〉 = 

 

= 
T
ε  + 

1
4π ⌡⌠

4π

 
 dΩ′ ⎣⎢

⎡
⎦⎥
⎤σ̂s 

ε2  χ(Ω′) + 
νs 
ε 〈I(Ω′)〉  . (48) 

 
As ε becomes vanishingly small, these equations 
describe a small amount of opaque material admixed 
with a large amount of relatively transparent material. 
Thus, the stochastic mixture will be nearly transparent, 
with large and numerous transmission windows between 
sparse chunks of opaque material. 

We now assume asymptotic expansions according 
to 
 

〈I(Ω)〉 ~ ∑
n=0

 εn 〈I(n)(Ω)〉,     (49) 

 

χ(Ω) ~ ∑
n=0

 εn χ(n)(Ω).  (50) 

 
We insert Eqs. (49) and (50) into Eqs. (47) and (48), 
and equate coefficients of like powers of ε. This 
generates an infinite hierarchy of equations. The first 
three equations from Eq. (47) are 

 

νχ(0)(Ω) = 
νs 
4π ⌡⌠

4π

 
 dΩ′ χ

(0)(Ω′),    (51) 

 
[Ω⋅∇ + 〈σ〉] 〈I(0)(Ω)〉 + ν χ(1)(Ω) = 
 

= 〈S〉 + 
1
4π ⌡⌠

4π

 
 dΩ′[〈σs〉 〈I(0)(Ω′)〉 +νs χ(1)(Ω′)], (52) 

 

[Ω⋅∇ + 〈σ〉] 〈I(1)(Ω)〉 + νχ(2)(Ω) = 
 

= 
1
4π ⌡⌠

4π

 
 dΩ′[〈σs〉 〈I(1)(Ω′)〉 + νs χ(2)(Ω′)], (53) 

 

and the first three equations from Eq. (48) are 
 

 

σ̂(Ω) χ(0)(Ω) = 
σ̂s 
4π ⌡⌠

4π

 
 dΩ′χ

(0)(Ω′), (54) 

 

σ̂(Ω) χ(1)(Ω) + ν 〈I(0)(Ω)〉 = 
 

= T + 
1
4π ⌡⌠

4π

 
 dΩ′[σ̂s χ(1)(Ω′) + νs 〈I(0)(Ω′)〉], (55) 

 

Ω⋅∇ χ(0)(Ω)+σ̂(Ω) χ(2)(Ω)+ν 〈I(1)(Ω)〉= 
 

= 
1
4π ⌡⌠

4π

 
 dΩ′ [σ̂s χ(2)(Ω′)+νs 〈I(1)(Ω′)〉]. (56) 

 

From Eqs. (51) and (54) we immediately have 
 

χ(0)(Ω) = 0.  (57) 
 

 

We next multiply Eq. (53) by ε and add the result to 
Eq. (52). Making use of [see Eq. (49)] 

 

〈I(Ω)〉 = 〈I(0)(Ω)〉 + ε 〈I(1)(Ω)〉 + O(ε2),  (58) 
 

we obtain 
 

Ω⋅∇〈I(Ω)〉 + 〈σ〉 〈I(Ω)〉 + ν ψ(Ω) = 
 

= 〈S〉 + 
〈σs〉 
4π  ⌡⌠

4π

 
 dΩ′ 〈I(Ω′)〉+ 

νs 
η

4π  +O(ε2), (59) 

 

where we have defined 
 

ψ(Ω) = χ(1)(Ω) + ε χ(2)(Ω), (60) 
 

η = ⌡⌠
4π

 
 dΩ ψ(Ω). (61) 

 

Similarly, we multiply Eq. (56) by ε and add the result 
to Eq. (55) to obtain 

 

σ̂(Ω) ψ(Ω) + ν 〈I(Ω)〉 = T + 
νs 
4π ⌡⌠

4π

 
 dΩ′ 〈I(Ω′)〉 + 

+ 
σ̂s 
4π η + O(ε2). (62) 

 

Our procedure will be to solve Eq. (62) for ψ(Ω) and 
η, and use those results in Eq. (59). 

To this end, we divide Eq. (62) by σ̂(Ω) and 
integrate over the solid angle. Solving the resulting 
equation for η gives 
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η = 
4πT

σ̂ $ σ̂s

 $ 
⎝
⎛

⎠
⎞1

σ$ $ σ̂s

  ⌡⌠
4π

 
 dΩ′⎣⎢

⎡
⎦⎥
⎤ν 

σ$

σ̂(Ω′)
 $ νs  〈I(Ω′)〉 + O(ε2),  

(63) 
where we have defined 

 

1

σ$
 = 

1
4π ⌡⌠

4π

 
 dΩ 

1

σ̂(Ω)
 . (64) 

 
Substituting Eq. (63) for η back into Eq. (62) gives 
ψ(Ω) as 

 

ψ(Ω) = 
σ$T

(σ$ $ σ̂s)σ̂(Ω)
 $ 

ν〈I(Ω)〉

σ̂(Ω)
 $ 

 

$ 
σ$

4π(σ$ $ σ̂s) σ̂(Ω)
 ⌡⌠
4π

 
 dΩ′ ⎣

⎢
⎡

⎦
⎥
⎤σ̂s 

ν

σ̂(Ω′)
 $ νs  〈I(Ω′)〉. (65) 

 
Finally, the use of Eqs. (63) and (65) for the η and 
ψ(Ω) terms in Eq. (59) yields a renormalized equation 
for the ensemble-averaged specific intensity of 
radiation. This can be written as  

 
Ω⋅∇ 〈I(Ω)〉 + σeff(Ω) 〈I(Ω)〉 = Seff(Ω) + 
 

+ 
1
4π ⌡⌠

4π

 
 dΩ′σs,eff(Ω′, Ω) 〈I(Ω′)〉 + O(ε2), (66) 

 
where we have defined the effective properties 
according to 

 

σeff(Ω) = 〈σ〉 $ ν2/σ̂(Ω) ≥ 0,  (67) 
 

σs,eff(Ω′, Ω) = 〈σs〉 $ 
⎝
⎛

⎠
⎞1

σ$ $ σ̂s

 × 

 

× 
⎣⎢
⎡

⎦⎥
⎤

νs ν σ$ 
⎝
⎛

⎠
⎞1

σ̂(Ω′)
 + 

1

σ̂(Ω)
 $ 

ν2 σ$ σ̂s

σ̂(Ω′) σ̂(Ω)
 $ νs

2  ≥ 0, (68) 

 

Seff(Ω) = 〈S〉 $ 
⎝
⎛

⎠
⎞1

σ$ $ σ̂s

 
⎣⎢
⎡

⎦⎥
⎤σ$

σ̂(Ω)
 ν $ νs  T ≥ 0.  (69) 

 
As indicated by the inequalities in Eqs. (67) through 
(69), these effective property definitions are robust in 
that they always yield nonnegative results for all 
physical (nonnegative) parameters σsi, σai, Si, and 
λi(Ω), even if one is far from the asymptotic limit 
under consideration.  

We see from Eq. (66) that 〈I(Ω)〉 for this nearly 
transparent asymptotic limit is described by a single 
deterministic equation of transfer, but with the unusual 
feature that the effective properties are direction 
dependent. These angular dependences arise solely from 
the angular dependences of the correlation length 
λc(Ω), which in its turn arises from the angular 

dependences of the Markov transition lengths λi(Ω). In 
the case of isotropic statistics, the λi are, by definition, 

independent of Ω and thus σ̂ is also independent of Ω 

[see Eq. (32)]. Further, in this case σ$ = σ̂ [see 
Eq. (64)], and then Eqs. (67) through (69) reduce to 
angularly independent results given by 

 

σeff = 〈σ〉 $ ν2/σ̂ , (70) 
 

σs,eff = 〈σs〉 $ 
⎣⎢
⎡

⎦⎥
⎤ν2

σ̂
 $ 

(ν $ νs 
)2

(σ̂ $ σ̂s)
 , (71) 

 

Seff = 〈S〉 $ 
⎣⎢
⎡

⎦⎥
⎤(ν $

 
νs)

(σ̂ $ σ̂s)
 T, (72) 

 
which agree with earlier results given by Malvagi et 
al.17 We also note that in the limit of a vanishing small 

correlation length, i.e., λc→0, we have σ̂ → ∞ and then 

σ$ → ∞. Thus, as λc → 0, Eqs. (67) through (69), as 
well as Eqs. (70) through (72), reduce to 

 
σeff = 〈σ〉,    σs,eff = 〈σs〉,   Seff = 〈S〉. (73) 
 

Thus, this λc → 0 limit of the nearly transparent 
asymptotic limit yields the atomic mix model. This is 
the physically correct result since a vanishing λc implies 
that one or both of the λi vanish, and this is the 
condition for atomic mix to be a valid description of 
the stochastic problem. 

Had we applied the transparent correction 
procedure, which is what was invoked to replace 
Eq. (1) with Eq. (23), only to the statistical correction 
to atomic mix, the renormalized equation of transfer 
would have been 
 

Ω⋅∇〈I(Ω)〉 + σ ′eff(Ω) 〈I(Ω)〉 = 

= Leff I(Ω) + Seff(Ω) + O(ε2), (74) 
 
with Seff(Ω) still given by Eq. (69), and  

 

σ ′eff(Ω) = σeff(Ω) + 〈σ′sμ
$〉, (75) 

 

Leff 〈I(Ω)〉 = ⌡⌠
4π

 
 dΩ′ σ ′s,eff(Ω′→ Ω) 〈I(Ω′)〉, (76) 

where 
 

σ ′s,eff(Ω′ →  Ω) = 
1
4π σs,eff(Ω′, Ω) + 〈σ′sf(Ω′, Ω) $ 

σs 
4π〉. (77) 

 

In the λc → 0 limit, Eq. (74) together with the 
definitions given by Eqs. (69) and (75) through (77), 
reduces to the atomic mix description for the stochastic 
equation given by Eq. (1). 

Finally, we remark that had we applied the nearly 
transparent limit scalings to the two-equation stochastic 
model describing anisotropic scattering as given by 
Eqs. (12) and (13), we would not have obtained a 
renormalized equation. The equation in this analysis for  
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ψ(Ω) (the analog of Eq. (62)) cannot be solved in terms 
of 〈I(Ω)〉 in any simple closed form. That is, the analog of 
Eq. (65) cannot be obtained, except in an abstract way 
involving an inverse scattering operator. This prevents the 
construction of an explicit renormalized equation. In the 
next section, we consider a second asymptotic limit, 
namely the small correlation length limit. In contrast to 
the nearly transparent limit we have just treated, this 
small correlation length limit analysis leads to an explicit 
renormalized equation of transfer from both Eqs. (12) 
and (13), and Eqs. (29) and (30). 

 
4. THE SMALL CORRELATION LENGTH LIMIT 

 
We again begin our considerations with the 

isotropic scattering equations given by Eqs. (29) and 
(30). We assume that the correlation length λc(Ω) is 
small compared to the photon mean free path in each 
component (clouds and clear sky) of the atmosphere. 
We reflect this smallness by introducing the scaling 

 

λ“(Ω) → ε λ“(Ω), (78) 
 

where ε again is a formal smallness parameter. From 
Eqs. (17), (18), and (31) through (36), we conclude 

that σ̂(Ω) then scales as 1/ε, and all other parameters 
defined by these equations are O(1). Thus, Eqs. (29) 
and (30) scale as  

 

[Ω⋅∇ + 〈σ〉] 〈I(Ω)〉 + ν χ(Ω)= 
 

= 〈S〉 + 
1
4π ⌡⌠

4π

 
 dΩ′[〈σs〉 〈I(Ω′)〉+ νs χ(Ω′)],  (79) 

 

⎣
⎡

⎦
⎤

Ω⋅∇ + 
σ̂(Ω)
ε  χ(Ω) + ν 〈I(Ω)〉 = 

 

= T + 
1
4π ⌡⌠

4π

 
 dΩ′[σ̂s χ(Ω′) + νs 〈I(Ω′)〉]. (80) 

 

As ε approaches zero, these two equations model a 
binary stochastic mixture with a vanishingly small 
correlation length, which in turn implies that one or 
both of the λi(Ω) is vanishingly small. 

We introduce the asymptotic expansions given by 
Eqs. (49) and (50) into Eqs. (79) and (80), and equate 
coefficients of like powers of ε. The first two equations 
from Eq. (79) are 

 

[Ω⋅∇ + 〈σ〉] 〈I(0)(Ω)〉 + ν χ(0)(Ω) = 
 
 

= 〈S〉 + 
1
4π ⌡⌠

4π

 
 dΩ′ [〈σs〉 〈I(0)(Ω′)〉+ νs χ(0)(Ω′)], (81) 

 

[Ω⋅∇ + 〈σ〉] 〈I(1)(Ω)〉 + ν χ(1)(Ω) = 
 

= 
1
4π ⌡⌠

4π

 
 dΩ′ [〈σs〉 〈I(1)(Ω′)〉+ νs χ(1)(Ω′)], (82) 

 

and the first two equations from Eq. (80) are  

σ̂(Ω) χ(0)(Ω) = 0, (83) 
 

Ω⋅∇ χ(0)(Ω) + σ̂(Ω) χ(1)(Ω) + ν 〈I(0)(Ω)〉 = 
 

= T + 
1
4π ⌡⌠

4π

 
 dΩ′[σ̂s χ(0)(Ω′) + νs 〈I(0)(Ω′)〉].   (84) 

 

Since σ̂(Ω) > 0, we deduce from Eq. (83) that 
 
χ(0)(Ω) = 0,  (85) 
 
and then Eq. (81) becomes 
 

[Ω⋅∇ + 〈σ〉]〈I(0)(Ω)〉 = 〈S〉 + 
〈σs 

〉

4π  ⌡⌠
4π

 
 dΩ′ 〈I

(0)(Ω′)〉. (86) 

 
Making use of Eq. (49) in the form 

 
〈I(Ω)〉 = 〈I(0)(Ω)〉 + O(ε), (87) 
 
the result can be rewritten as 
 
Ω⋅∇ 〈I(Ω)〉 + 〈σ〉 〈I(Ω)〉 = 
 

= 〈S〉 + 
〈σs 

〉

4π  ⌡⌠
4π

 
 dΩ′ 〈I(Ω′)〉 + O(ε). (88) 

 
From Eq. (88) we deduce that, with an error of O(ε), 
i.e., with an error of O(λc), the proper statistical 
description for a small correlation length problem is 
simply atomic mix. This result is, of course, known 
from physical considerations. 

To obtain the first order (in λc) correction to 
atomic mix, we need to utilize Eqs. (82) and (84). We 
first multiply Eq. (82) by ε and add the result to 
Eq. (81). Using Eq. (58) and defining 

 
ψ(Ω) = ε χ(1)(Ω), (89) 
 

we obtain 
 

Ω⋅∇〈I(Ω)〉 + 〈σ〉 〈I(Ω)〉 + ν ψ(Ω) = 
 

= 〈S〉 + 
1
4π ⌡⌠

4π

 
 dΩ′[〈σs〉 〈I(Ω′)〉 + νs ψ(Ω′) + O(ε2). (90) 

 
Next we multiply Eq. (84) with χ(0)(Ω)=0 by ε, make 
use of the definition of ψ(Ω) given by Eq. (89), and 
use [see Eq. (49)] 

 

ε〈I0(Ω)〉 = ε〈I(Ω)〉 + O(ε2). (91) 
 

This gives, setting the formal smallness parameter ε to 
unity, 

σ̂(Ω) ψ(Ω) + ν 〈I(Ω)〉 = T + 

νs 
4π ⌡⌠

4π

 
 dΩ′ 〈I(Ω′)〉 + O(ε2).  

(92) 
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Using ψ(Ω) from this equation in Eq. (90) yields, upon 
collecting terms,  

 

Ω⋅∇〈I(Ω)〉 + 
⎣
⎡

⎦
⎤〈σ〉 $ 

ν2

σ̂(Ω)
 〈I(Ω)〉 = 

 

= 〈S〉 $ 
⎣⎢
⎡

⎦⎥
⎤ν

σ̂(Ω)
 $ 

νs 

σ$
 T + 

 

+ 
1
4π ⌡⌠

4π

 
 dΩ′ ⎩⎪

⎨
⎪⎧

⎭⎪
⎬
⎪⎫

〈σs〉 $ 
⎣⎢
⎡

⎦⎥
⎤ν νs 

σ̂(Ω′)
 + 

ν νs 

σ̂(Ω)
 $ 

ν2
s 

σ$
 × 

 

× 〈I(Ω′)〉 + O(ε2), (93) 
 

 

where σ$ has been defined earlier by Eq. (64). This 
result can be written as 

 
Ω⋅∇〈I(Ω)〉+σeff(Ω) 〈I(Ω)〉 = Seff(Ω) + 
 

+ 
1
4π ⌡⌠

4π

 
 dΩ′σs,eff(Ω′, Ω) 〈I(Ω′)〉 + O(ε2), (94) 

 
where we have defined the effective parameters 
 

σeff(Ω) = 〈σ〉 $ ν2/σ̂(Ω),  (95) 
 

σs,eff(Ω′, Ω) = 〈σs〉 $ νs 
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

ν 
⎣
⎡

⎦
⎤1

σ̂(Ω′)
 + 

1

σ̂(Ω)
 $ 

νs 

σ$
, (96) 

 

Seff(Ω) = 〈S〉 $ 
⎣⎢
⎡

⎦⎥
⎤ν

σ̂(Ω)
 $ 

νs 

σ$
 T. (97) 

 
From Eq. (32) we have 

 

1/[σ̂(Ω)] = λc(Ω) + O(λ2
c), (98) 

 
and then Eq. (64) yields 
 

1/σ$ = λ$c + O(λ2
c), (99) 

 
where we have defined 

 

λ$c = 
1
4π ⌡⌠

4π

 
 dΩ λc(Ω).  (100) 

 
Thus, Eqs. (95) through (97) can be written, since 

O(λ2
c) = O(ε2), 

 
σeff(Ω) = 〈σ〉 $ ν2 λc(Ω) + n(ε2),  (101) 
 

σs,eff(Ω′, Ω) = 〈σs〉 $ νs {ν[λc(Ω′) + λc(Ω)] $ 
 

$ νs λ
$

c} + n(ε2), (102) 
 

Seff(Ω) = 〈S〉 $ [ν λc(Ω) $ νs λ
$

c] T + n(ε2). (103) 
 
The O(ε2) errors in Eqs. (101) through (103) are 
consistent with the O(ε2) error in the renormalized 
equation of transfer given by Eq. (94). 

Another asymptotically equivalent, but more 
robust, set of these effective properties is  

 

σeff(Ω) = 
〈σ〉

1 + ν2 λc(Ω)/〈σ〉 + n(ε2),   (104) 

 
σs,eff(Ω′, Ω) = 
 

= 

〈σs〉 

1 + νs {ν [λc(Ω′) + λc(Ω)] $ νs λ
$

c}/〈σs〉
 + n(ε2), (105) 

 

Seff(Ω) = 
〈S〉

1 + [ν λc(Ω) $ νs λ
$] T/〈S〉

 + n(ε2). (106) 

 
For isotropic statistics, i.e., λc independent of Ω, 
Eqs. (101) through (103) further reduce to  
 
σeff(Ω) = 〈σ〉 $ ν2 λc + n(ε2), (107) 
 

σs,eff = 〈σs〉 $ νs (2ν $ νs)λc + n(ε2),  (108) 
 

Seff = 〈S〉 $ (ν $ νs) λc + n(ε2),  (109) 
 
with a similar simplification for Eqs. (104) through 
(106). 

This same asymptotic limit, namely the small 
correlation length limit, but now corresponding to the 
anisotropic scattering model given by Eqs. (12) and 
(13), is easily treated just as we have treated the 
isotropic scattering model given by Eqs. (29) and (30). 
All terms in Eqs. (12) and (13) are scaled as O(1), 

except σ̂′(Ω) which scales as 1/ε. Once again, we use 
the expansions given by Eqs. (49) and (50), and equate 
coefficients of like powers of ε. Omitting the 
straightforward details, which closely parallel the 
analysis just completed, we find a first order in λc(Ω) 
correction to atomic mix given by 

 
Ω⋅∇〈I(Ω)〉 + σ ′eff(Ω) 〈I(Ω)〉 = 

=
 
Seff(Ω) + Leff 〈I(Ω)〉 + O(ε2). (110) 

 
Here we have defined the effective properties 

 

σ ′eff(Ω) = 〈σ′〉 $ ν′2/σ̂′(Ω)K (111) 
 

Seff(Ω) = 〈S〉 $ 
⎣
⎡

⎦
⎤ν′

σ̂′(Ω)
 $ K 

1

σ̂′(Ω)
 T,  (112) 

 
and the effective scattering operator 

 

Leff = 〈L〉 $ ν′ 
⎣
⎡

⎦
⎤1

σ̂′(Ω)
 K + K 

1

σ̂′(Ω)
 + K 

1

σ̂′(Ω)
 K. (113) 
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Again we see that the effective properties contain 
unusual angular dependences arising from the angular 
dependence of λc(Ω). Further, the effective source as 
given by Eq. (112) involves the scattering operator K, 
and the effective scattering operator defined by 
Eq. (113) is somewhat complex in that it involves a 
convolution of the scattering operator K with itself. 
Nonetheless, this analysis yields a single, renormalized 
equation of transfer given by Eq. (110). That is, the 
two-equation model given by Eqs. (12) and (13) has 
been reduced to a single equation. 

As before, making use of Eq. (98), the effective 
quantities given by Eqs. (111) through (113) can be 
written as atomic mix quantities plus a term linear in 
λc(Ω). These results are  

 
σ ′eff(Ω) = 〈σ′〉 $ ν′2 λ“(Ω) + O(ε2),    (114) 
 

Seff(Ω) = 〈S〉 $ (ν′ $ K) λ“(Ω) T + O(ε2), (115) 
 

Leff = 〈L〉 + ν′[λ“(Ω)K + K λ“(Ω)] + K λ“(Ω)K + O(ε2). 
 (116) 
A more robust form of Eq. (114) is  

 

σ ′eff(Ω) = 
〈σ′〉

1 + [ν′2 λc(Ω)/〈σ′〉] + n(ε2). (117) 
 

 
Similar simple manipulations of Eqs. (115) and (116) 
are not possible because of the appearance of the 
scattering operators K and 〈L〉. That is, these 
manipulations would result in formal inverse scattering 
operators present in the results. 

 
5. CONCLUDING REMARKS 

 
In this paper we have shown that a two-equation 

model7$11 describing radiative transfer in a binary 
(clouds and clear sky) Markovian mixture can be 
reduced to a single renormalized equation of transfer in 
two distinct circumstances. These two circumstances are 
asymptotic limits corresponding to: (1) a nearly 
transparent atmosphere and (2) small correlation length 
mixing statistics. We also pointed out that these 
Markovian models can be applied to non-Markovian 
statistics of the renewal type by appropriately 
modifying the correlation length.16 This is important in 
the cloud-radiation interaction problem because, while 
the spacing between clouds is perhaps well 
approximated by Markovian statistics, the clouds 
themselves are almost certainly not Markovian in 
nature.18 

Before any of these renormalized equations are 
incorporated into general circulation models of the 
atmosphere, numerical tests should be performed to 
assess their accuracy away from the asymptotic limits 
underlying their derivations. Specifically, 
renormalized equation results should be compared to 
the corresponding two-equation model predictions. In 
turn, both of these results should be compared to exact 
stochastic atmosphere results, computed by: (1) 

constructing, by Monte Carlo methods, a statistical 
realization of a partially cloudy atmosphere9,19; (2) 
solving the resulting deterministic radiative transfer 
problem either by Monte Carlo or by a deterministic 
method such as discrete ordinates9,15,19; and, (3) 
repeating the above two steps a large number of times, 
of the order of 105 (Refs. 9 and 19) and numerically 
averaging to obtain the ensemble-averaged solution. A 
comparison of higher moments, such as the variance, 
might also be of some interest. In this regard, the 
Liouville master equation derivation of the two-
equation stochastic model for the ensemble-averaged 
intensity can also be used to obtain corresponding two-
equation models for all of the higher moments, and in 
particular for the variance.7 Finally, since two-stream 
(diffusive) approximations20 are often used in practice 
(because of their simplicity) to treat atmospheric 
radiative transfer problems, there would be interest in a 
numerical comparison of two-stream renormalized 
equation results with full angularly dependent 
renormalized equation predictions. 

In summary, a great deal of numerical testing is 
clearly required to establish the regions of validity of 
the various renormalized equations of transfer (and 
their diffusive approximations) proposed in this paper. 
If those regions of validity coincide with the regions of 
interest in the cloud-radiation arena, it would seem that 
these renormalized equations would be good candidates 
for inclusion as the radiative transfer treatment in 
general circulation models of the atmosphere. 
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